This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prodmo . (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodmo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) | |
| prodmo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| prodmo.3 | ⊢ 𝐺 = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) | ||
| Assertion | prodmolem2 | ⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodmo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) | |
| 2 | prodmo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | prodmo.3 | ⊢ 𝐺 = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) | |
| 4 | 3simpb | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ) | |
| 5 | 4 | reximi | ⊢ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) → ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ) |
| 6 | fveq2 | ⊢ ( 𝑚 = 𝑤 → ( ℤ≥ ‘ 𝑚 ) = ( ℤ≥ ‘ 𝑤 ) ) | |
| 7 | 6 | sseq2d | ⊢ ( 𝑚 = 𝑤 → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ↔ 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ) ) |
| 8 | seqeq1 | ⊢ ( 𝑚 = 𝑤 → seq 𝑚 ( · , 𝐹 ) = seq 𝑤 ( · , 𝐹 ) ) | |
| 9 | 8 | breq1d | ⊢ ( 𝑚 = 𝑤 → ( seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ↔ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ) |
| 10 | 7 9 | anbi12d | ⊢ ( 𝑚 = 𝑤 → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ↔ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ) ) |
| 11 | 10 | cbvrexvw | ⊢ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ↔ ∃ 𝑤 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ) |
| 12 | reeanv | ⊢ ( ∃ 𝑤 ∈ ℤ ∃ 𝑚 ∈ ℕ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ↔ ( ∃ 𝑤 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) | |
| 13 | simprlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) | |
| 14 | simprll | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ) | |
| 15 | uzssz | ⊢ ( ℤ≥ ‘ 𝑤 ) ⊆ ℤ | |
| 16 | zssre | ⊢ ℤ ⊆ ℝ | |
| 17 | 15 16 | sstri | ⊢ ( ℤ≥ ‘ 𝑤 ) ⊆ ℝ |
| 18 | 14 17 | sstrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → 𝐴 ⊆ ℝ ) |
| 19 | ltso | ⊢ < Or ℝ | |
| 20 | soss | ⊢ ( 𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴 ) ) | |
| 21 | 18 19 20 | mpisyl | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → < Or 𝐴 ) |
| 22 | fzfi | ⊢ ( 1 ... 𝑚 ) ∈ Fin | |
| 23 | ovex | ⊢ ( 1 ... 𝑚 ) ∈ V | |
| 24 | 23 | f1oen | ⊢ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 → ( 1 ... 𝑚 ) ≈ 𝐴 ) |
| 25 | 24 | ad2antll | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → ( 1 ... 𝑚 ) ≈ 𝐴 ) |
| 26 | 25 | ensymd | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → 𝐴 ≈ ( 1 ... 𝑚 ) ) |
| 27 | enfii | ⊢ ( ( ( 1 ... 𝑚 ) ∈ Fin ∧ 𝐴 ≈ ( 1 ... 𝑚 ) ) → 𝐴 ∈ Fin ) | |
| 28 | 22 26 27 | sylancr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → 𝐴 ∈ Fin ) |
| 29 | fz1iso | ⊢ ( ( < Or 𝐴 ∧ 𝐴 ∈ Fin ) → ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) | |
| 30 | 21 28 29 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
| 31 | 2 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 32 | eqid | ⊢ ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) | |
| 33 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑚 ∈ ℕ ) | |
| 34 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑤 ∈ ℤ ) | |
| 35 | simplll | ⊢ ( ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ) | |
| 36 | 35 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ) |
| 37 | simprlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) | |
| 38 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) | |
| 39 | 1 31 3 32 33 34 36 37 38 | prodmolem2a | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → seq 𝑤 ( · , 𝐹 ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) |
| 40 | 39 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → ( 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → seq 𝑤 ( · , 𝐹 ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) |
| 41 | 40 | exlimdv | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → ( ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → seq 𝑤 ( · , 𝐹 ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) |
| 42 | 30 41 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → seq 𝑤 ( · , 𝐹 ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) |
| 43 | climuni | ⊢ ( ( seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ∧ seq 𝑤 ( · , 𝐹 ) ⇝ ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) | |
| 44 | 13 42 43 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) |
| 45 | eqeq2 | ⊢ ( 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) → ( 𝑥 = 𝑧 ↔ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) | |
| 46 | 44 45 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → ( 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) → 𝑥 = 𝑧 ) ) |
| 47 | 46 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ) → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 → ( 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) → 𝑥 = 𝑧 ) ) ) |
| 48 | 47 | impd | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ) → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑧 ) ) |
| 49 | 48 | exlimdv | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑧 ) ) |
| 50 | 49 | expimpd | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ ) ) → ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) → 𝑥 = 𝑧 ) ) |
| 51 | 50 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ℤ ∃ 𝑚 ∈ ℕ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) → 𝑥 = 𝑧 ) ) |
| 52 | 12 51 | biimtrrid | ⊢ ( 𝜑 → ( ( ∃ 𝑤 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) → 𝑥 = 𝑧 ) ) |
| 53 | 52 | expdimp | ⊢ ( ( 𝜑 ∧ ∃ 𝑤 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑧 ) ) |
| 54 | 11 53 | sylan2b | ⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑧 ) ) |
| 55 | 5 54 | sylan2 | ⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑧 ) ) |