This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prodmo . (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodmo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) | |
| prodmo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| prodmo.3 | ⊢ 𝐺 = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) | ||
| prodmolem3.4 | ⊢ 𝐻 = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝐾 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) | ||
| prodmolem3.5 | ⊢ ( 𝜑 → ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) | ||
| prodmolem3.6 | ⊢ ( 𝜑 → 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ) | ||
| prodmolem3.7 | ⊢ ( 𝜑 → 𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 ) | ||
| Assertion | prodmolem3 | ⊢ ( 𝜑 → ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , 𝐻 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodmo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) | |
| 2 | prodmo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | prodmo.3 | ⊢ 𝐺 = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) | |
| 4 | prodmolem3.4 | ⊢ 𝐻 = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝐾 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) | |
| 5 | prodmolem3.5 | ⊢ ( 𝜑 → ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) | |
| 6 | prodmolem3.6 | ⊢ ( 𝜑 → 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ) | |
| 7 | prodmolem3.7 | ⊢ ( 𝜑 → 𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 ) | |
| 8 | mulcl | ⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ) → ( 𝑚 · 𝑗 ) ∈ ℂ ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ) ) → ( 𝑚 · 𝑗 ) ∈ ℂ ) |
| 10 | mulcom | ⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ) → ( 𝑚 · 𝑗 ) = ( 𝑗 · 𝑚 ) ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ) ) → ( 𝑚 · 𝑗 ) = ( 𝑗 · 𝑚 ) ) |
| 12 | mulass | ⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑚 · 𝑗 ) · 𝑧 ) = ( 𝑚 · ( 𝑗 · 𝑧 ) ) ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( ( 𝑚 · 𝑗 ) · 𝑧 ) = ( 𝑚 · ( 𝑗 · 𝑧 ) ) ) |
| 14 | 5 | simpld | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 15 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 16 | 14 15 | eleqtrdi | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 17 | ssidd | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) | |
| 18 | f1ocnv | ⊢ ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 → ◡ 𝑓 : 𝐴 –1-1-onto→ ( 1 ... 𝑀 ) ) | |
| 19 | 6 18 | syl | ⊢ ( 𝜑 → ◡ 𝑓 : 𝐴 –1-1-onto→ ( 1 ... 𝑀 ) ) |
| 20 | f1oco | ⊢ ( ( ◡ 𝑓 : 𝐴 –1-1-onto→ ( 1 ... 𝑀 ) ∧ 𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 ) → ( ◡ 𝑓 ∘ 𝐾 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑀 ) ) | |
| 21 | 19 7 20 | syl2anc | ⊢ ( 𝜑 → ( ◡ 𝑓 ∘ 𝐾 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |
| 22 | ovex | ⊢ ( 1 ... 𝑁 ) ∈ V | |
| 23 | 22 | f1oen | ⊢ ( ( ◡ 𝑓 ∘ 𝐾 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑀 ) → ( 1 ... 𝑁 ) ≈ ( 1 ... 𝑀 ) ) |
| 24 | 21 23 | syl | ⊢ ( 𝜑 → ( 1 ... 𝑁 ) ≈ ( 1 ... 𝑀 ) ) |
| 25 | fzfi | ⊢ ( 1 ... 𝑁 ) ∈ Fin | |
| 26 | fzfi | ⊢ ( 1 ... 𝑀 ) ∈ Fin | |
| 27 | hashen | ⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( 1 ... 𝑀 ) ∈ Fin ) → ( ( ♯ ‘ ( 1 ... 𝑁 ) ) = ( ♯ ‘ ( 1 ... 𝑀 ) ) ↔ ( 1 ... 𝑁 ) ≈ ( 1 ... 𝑀 ) ) ) | |
| 28 | 25 26 27 | mp2an | ⊢ ( ( ♯ ‘ ( 1 ... 𝑁 ) ) = ( ♯ ‘ ( 1 ... 𝑀 ) ) ↔ ( 1 ... 𝑁 ) ≈ ( 1 ... 𝑀 ) ) |
| 29 | 24 28 | sylibr | ⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = ( ♯ ‘ ( 1 ... 𝑀 ) ) ) |
| 30 | 5 | simprd | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 31 | 30 | nnnn0d | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 32 | hashfz1 | ⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) | |
| 33 | 31 32 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) |
| 34 | 14 | nnnn0d | ⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 35 | hashfz1 | ⊢ ( 𝑀 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑀 ) ) = 𝑀 ) | |
| 36 | 34 35 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑀 ) ) = 𝑀 ) |
| 37 | 29 33 36 | 3eqtr3rd | ⊢ ( 𝜑 → 𝑀 = 𝑁 ) |
| 38 | 37 | oveq2d | ⊢ ( 𝜑 → ( 1 ... 𝑀 ) = ( 1 ... 𝑁 ) ) |
| 39 | 38 | f1oeq2d | ⊢ ( 𝜑 → ( ( ◡ 𝑓 ∘ 𝐾 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ↔ ( ◡ 𝑓 ∘ 𝐾 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑀 ) ) ) |
| 40 | 21 39 | mpbird | ⊢ ( 𝜑 → ( ◡ 𝑓 ∘ 𝐾 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |
| 41 | fveq2 | ⊢ ( 𝑗 = 𝑚 → ( 𝑓 ‘ 𝑗 ) = ( 𝑓 ‘ 𝑚 ) ) | |
| 42 | 41 | csbeq1d | ⊢ ( 𝑗 = 𝑚 → ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ) |
| 43 | elfznn | ⊢ ( 𝑚 ∈ ( 1 ... 𝑀 ) → 𝑚 ∈ ℕ ) | |
| 44 | 43 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) → 𝑚 ∈ ℕ ) |
| 45 | f1of | ⊢ ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) | |
| 46 | 6 45 | syl | ⊢ ( 𝜑 → 𝑓 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) |
| 47 | 46 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) → ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) |
| 48 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 49 | 48 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 50 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 | |
| 51 | 50 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ |
| 52 | csbeq1a | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑚 ) → 𝐵 = ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ) | |
| 53 | 52 | eleq1d | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑚 ) → ( 𝐵 ∈ ℂ ↔ ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 54 | 51 53 | rspc | ⊢ ( ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 55 | 47 49 54 | sylc | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 56 | 3 42 44 55 | fvmptd3 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑚 ) = ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ) |
| 57 | 56 55 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑚 ) ∈ ℂ ) |
| 58 | 38 | f1oeq2d | ⊢ ( 𝜑 → ( 𝐾 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ↔ 𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 ) ) |
| 59 | 7 58 | mpbird | ⊢ ( 𝜑 → 𝐾 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ) |
| 60 | f1of | ⊢ ( 𝐾 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 → 𝐾 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) | |
| 61 | 59 60 | syl | ⊢ ( 𝜑 → 𝐾 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) |
| 62 | fvco3 | ⊢ ( ( 𝐾 : ( 1 ... 𝑀 ) ⟶ 𝐴 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( ◡ 𝑓 ∘ 𝐾 ) ‘ 𝑖 ) = ( ◡ 𝑓 ‘ ( 𝐾 ‘ 𝑖 ) ) ) | |
| 63 | 61 62 | sylan | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( ◡ 𝑓 ∘ 𝐾 ) ‘ 𝑖 ) = ( ◡ 𝑓 ‘ ( 𝐾 ‘ 𝑖 ) ) ) |
| 64 | 63 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑓 ‘ ( ( ◡ 𝑓 ∘ 𝐾 ) ‘ 𝑖 ) ) = ( 𝑓 ‘ ( ◡ 𝑓 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) |
| 65 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ) |
| 66 | 61 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐾 ‘ 𝑖 ) ∈ 𝐴 ) |
| 67 | f1ocnvfv2 | ⊢ ( ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( 𝐾 ‘ 𝑖 ) ∈ 𝐴 ) → ( 𝑓 ‘ ( ◡ 𝑓 ‘ ( 𝐾 ‘ 𝑖 ) ) ) = ( 𝐾 ‘ 𝑖 ) ) | |
| 68 | 65 66 67 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑓 ‘ ( ◡ 𝑓 ‘ ( 𝐾 ‘ 𝑖 ) ) ) = ( 𝐾 ‘ 𝑖 ) ) |
| 69 | 64 68 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑓 ‘ ( ( ◡ 𝑓 ∘ 𝐾 ) ‘ 𝑖 ) ) = ( 𝐾 ‘ 𝑖 ) ) |
| 70 | 69 | csbeq1d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ⦋ ( 𝑓 ‘ ( ( ◡ 𝑓 ∘ 𝐾 ) ‘ 𝑖 ) ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝐾 ‘ 𝑖 ) / 𝑘 ⦌ 𝐵 ) |
| 71 | 70 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( I ‘ ⦋ ( 𝑓 ‘ ( ( ◡ 𝑓 ∘ 𝐾 ) ‘ 𝑖 ) ) / 𝑘 ⦌ 𝐵 ) = ( I ‘ ⦋ ( 𝐾 ‘ 𝑖 ) / 𝑘 ⦌ 𝐵 ) ) |
| 72 | f1of | ⊢ ( ( ◡ 𝑓 ∘ 𝐾 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) → ( ◡ 𝑓 ∘ 𝐾 ) : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) | |
| 73 | 40 72 | syl | ⊢ ( 𝜑 → ( ◡ 𝑓 ∘ 𝐾 ) : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) |
| 74 | 73 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( ◡ 𝑓 ∘ 𝐾 ) ‘ 𝑖 ) ∈ ( 1 ... 𝑀 ) ) |
| 75 | elfznn | ⊢ ( ( ( ◡ 𝑓 ∘ 𝐾 ) ‘ 𝑖 ) ∈ ( 1 ... 𝑀 ) → ( ( ◡ 𝑓 ∘ 𝐾 ) ‘ 𝑖 ) ∈ ℕ ) | |
| 76 | fveq2 | ⊢ ( 𝑗 = ( ( ◡ 𝑓 ∘ 𝐾 ) ‘ 𝑖 ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑓 ‘ ( ( ◡ 𝑓 ∘ 𝐾 ) ‘ 𝑖 ) ) ) | |
| 77 | 76 | csbeq1d | ⊢ ( 𝑗 = ( ( ◡ 𝑓 ∘ 𝐾 ) ‘ 𝑖 ) → ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ ( ( ◡ 𝑓 ∘ 𝐾 ) ‘ 𝑖 ) ) / 𝑘 ⦌ 𝐵 ) |
| 78 | 77 3 | fvmpti | ⊢ ( ( ( ◡ 𝑓 ∘ 𝐾 ) ‘ 𝑖 ) ∈ ℕ → ( 𝐺 ‘ ( ( ◡ 𝑓 ∘ 𝐾 ) ‘ 𝑖 ) ) = ( I ‘ ⦋ ( 𝑓 ‘ ( ( ◡ 𝑓 ∘ 𝐾 ) ‘ 𝑖 ) ) / 𝑘 ⦌ 𝐵 ) ) |
| 79 | 74 75 78 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ ( ( ◡ 𝑓 ∘ 𝐾 ) ‘ 𝑖 ) ) = ( I ‘ ⦋ ( 𝑓 ‘ ( ( ◡ 𝑓 ∘ 𝐾 ) ‘ 𝑖 ) ) / 𝑘 ⦌ 𝐵 ) ) |
| 80 | elfznn | ⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 𝑖 ∈ ℕ ) | |
| 81 | 80 | adantl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑖 ∈ ℕ ) |
| 82 | fveq2 | ⊢ ( 𝑗 = 𝑖 → ( 𝐾 ‘ 𝑗 ) = ( 𝐾 ‘ 𝑖 ) ) | |
| 83 | 82 | csbeq1d | ⊢ ( 𝑗 = 𝑖 → ⦋ ( 𝐾 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝐾 ‘ 𝑖 ) / 𝑘 ⦌ 𝐵 ) |
| 84 | 83 4 | fvmpti | ⊢ ( 𝑖 ∈ ℕ → ( 𝐻 ‘ 𝑖 ) = ( I ‘ ⦋ ( 𝐾 ‘ 𝑖 ) / 𝑘 ⦌ 𝐵 ) ) |
| 85 | 81 84 | syl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐻 ‘ 𝑖 ) = ( I ‘ ⦋ ( 𝐾 ‘ 𝑖 ) / 𝑘 ⦌ 𝐵 ) ) |
| 86 | 71 79 85 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐻 ‘ 𝑖 ) = ( 𝐺 ‘ ( ( ◡ 𝑓 ∘ 𝐾 ) ‘ 𝑖 ) ) ) |
| 87 | 9 11 13 16 17 40 57 86 | seqf1o | ⊢ ( 𝜑 → ( seq 1 ( · , 𝐻 ) ‘ 𝑀 ) = ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) ) |
| 88 | 37 | fveq2d | ⊢ ( 𝜑 → ( seq 1 ( · , 𝐻 ) ‘ 𝑀 ) = ( seq 1 ( · , 𝐻 ) ‘ 𝑁 ) ) |
| 89 | 87 88 | eqtr3d | ⊢ ( 𝜑 → ( seq 1 ( · , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( · , 𝐻 ) ‘ 𝑁 ) ) |