This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulrid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 1 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre | ⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) | |
| 2 | recn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) | |
| 3 | ax-icn | ⊢ i ∈ ℂ | |
| 4 | recn | ⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) | |
| 5 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( i · 𝑦 ) ∈ ℂ ) | |
| 6 | 3 4 5 | sylancr | ⊢ ( 𝑦 ∈ ℝ → ( i · 𝑦 ) ∈ ℂ ) |
| 7 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 8 | adddir | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( i · 𝑦 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑥 + ( i · 𝑦 ) ) · 1 ) = ( ( 𝑥 · 1 ) + ( ( i · 𝑦 ) · 1 ) ) ) | |
| 9 | 7 8 | mp3an3 | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( i · 𝑦 ) ∈ ℂ ) → ( ( 𝑥 + ( i · 𝑦 ) ) · 1 ) = ( ( 𝑥 · 1 ) + ( ( i · 𝑦 ) · 1 ) ) ) |
| 10 | 2 6 9 | syl2an | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑥 + ( i · 𝑦 ) ) · 1 ) = ( ( 𝑥 · 1 ) + ( ( i · 𝑦 ) · 1 ) ) ) |
| 11 | ax-1rid | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 · 1 ) = 𝑥 ) | |
| 12 | mulass | ⊢ ( ( i ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( i · 𝑦 ) · 1 ) = ( i · ( 𝑦 · 1 ) ) ) | |
| 13 | 3 7 12 | mp3an13 | ⊢ ( 𝑦 ∈ ℂ → ( ( i · 𝑦 ) · 1 ) = ( i · ( 𝑦 · 1 ) ) ) |
| 14 | 4 13 | syl | ⊢ ( 𝑦 ∈ ℝ → ( ( i · 𝑦 ) · 1 ) = ( i · ( 𝑦 · 1 ) ) ) |
| 15 | ax-1rid | ⊢ ( 𝑦 ∈ ℝ → ( 𝑦 · 1 ) = 𝑦 ) | |
| 16 | 15 | oveq2d | ⊢ ( 𝑦 ∈ ℝ → ( i · ( 𝑦 · 1 ) ) = ( i · 𝑦 ) ) |
| 17 | 14 16 | eqtrd | ⊢ ( 𝑦 ∈ ℝ → ( ( i · 𝑦 ) · 1 ) = ( i · 𝑦 ) ) |
| 18 | 11 17 | oveqan12d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑥 · 1 ) + ( ( i · 𝑦 ) · 1 ) ) = ( 𝑥 + ( i · 𝑦 ) ) ) |
| 19 | 10 18 | eqtrd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑥 + ( i · 𝑦 ) ) · 1 ) = ( 𝑥 + ( i · 𝑦 ) ) ) |
| 20 | oveq1 | ⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( 𝐴 · 1 ) = ( ( 𝑥 + ( i · 𝑦 ) ) · 1 ) ) | |
| 21 | id | ⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) | |
| 22 | 20 21 | eqeq12d | ⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( ( 𝐴 · 1 ) = 𝐴 ↔ ( ( 𝑥 + ( i · 𝑦 ) ) · 1 ) = ( 𝑥 + ( i · 𝑦 ) ) ) ) |
| 23 | 19 22 | syl5ibrcom | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( 𝐴 · 1 ) = 𝐴 ) ) |
| 24 | 23 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( 𝐴 · 1 ) = 𝐴 ) |
| 25 | 1 24 | syl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 1 ) = 𝐴 ) |