This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar . (Contributed by NM, 30-Aug-1993) (Proof shortened by Wolf Lammen, 26-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtoclf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| vtoclf.2 | ⊢ 𝐴 ∈ V | ||
| vtoclf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| vtoclf.4 | ⊢ 𝜑 | ||
| Assertion | vtoclf | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | vtoclf.2 | ⊢ 𝐴 ∈ V | |
| 3 | vtoclf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | vtoclf.4 | ⊢ 𝜑 | |
| 5 | 4 3 | mpbii | ⊢ ( 𝑥 = 𝐴 → 𝜓 ) |
| 6 | 1 2 5 | vtoclef | ⊢ 𝜓 |