This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A product has at most one limit. (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodmo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) | |
| prodmo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| prodmo.3 | ⊢ 𝐺 = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) | ||
| Assertion | prodmo | ⊢ ( 𝜑 → ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodmo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) | |
| 2 | prodmo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | prodmo.3 | ⊢ 𝐺 = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) | |
| 4 | 3simpb | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ) | |
| 5 | 4 | reximi | ⊢ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) → ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ) |
| 6 | 3simpb | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) | |
| 7 | 6 | reximi | ⊢ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) → ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) |
| 8 | fveq2 | ⊢ ( 𝑚 = 𝑤 → ( ℤ≥ ‘ 𝑚 ) = ( ℤ≥ ‘ 𝑤 ) ) | |
| 9 | 8 | sseq2d | ⊢ ( 𝑚 = 𝑤 → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ↔ 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ) ) |
| 10 | seqeq1 | ⊢ ( 𝑚 = 𝑤 → seq 𝑚 ( · , 𝐹 ) = seq 𝑤 ( · , 𝐹 ) ) | |
| 11 | 10 | breq1d | ⊢ ( 𝑚 = 𝑤 → ( seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ↔ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) |
| 12 | 9 11 | anbi12d | ⊢ ( 𝑚 = 𝑤 → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ↔ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) |
| 13 | 12 | cbvrexvw | ⊢ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ↔ ∃ 𝑤 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) |
| 14 | 13 | anbi2i | ⊢ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) ↔ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑤 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) |
| 15 | reeanv | ⊢ ( ∃ 𝑚 ∈ ℤ ∃ 𝑤 ∈ ℤ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ↔ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑤 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) | |
| 16 | 14 15 | bitr4i | ⊢ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) ↔ ∃ 𝑚 ∈ ℤ ∃ 𝑤 ∈ ℤ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) |
| 17 | simprlr | ⊢ ( ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) → seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) ) → seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) |
| 19 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 20 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) ) → 𝑚 ∈ ℤ ) | |
| 21 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) ) → 𝑤 ∈ ℤ ) | |
| 22 | simprll | ⊢ ( ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) | |
| 23 | 22 | adantl | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) |
| 24 | simprrl | ⊢ ( ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ) | |
| 25 | 24 | adantl | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ) |
| 26 | 1 19 20 21 23 25 | prodrb | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) ) → ( seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ↔ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) ) |
| 27 | 18 26 | mpbid | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) ) → seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ) |
| 28 | simprrr | ⊢ ( ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) → seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) | |
| 29 | 28 | adantl | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) ) → seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) |
| 30 | climuni | ⊢ ( ( seq 𝑤 ( · , 𝐹 ) ⇝ 𝑥 ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) → 𝑥 = 𝑧 ) | |
| 31 | 27 29 30 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) ) → 𝑥 = 𝑧 ) |
| 32 | 31 | expcom | ⊢ ( ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 33 | 32 | ex | ⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ ) → ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| 34 | 33 | rexlimivv | ⊢ ( ∃ 𝑚 ∈ ℤ ∃ 𝑤 ∈ ℤ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑤 ) ∧ seq 𝑤 ( · , 𝐹 ) ⇝ 𝑧 ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 35 | 16 34 | sylbi | ⊢ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 36 | 5 7 35 | syl2an | ⊢ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 37 | 1 2 3 | prodmolem2 | ⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) → 𝑧 = 𝑥 ) ) |
| 38 | equcomi | ⊢ ( 𝑧 = 𝑥 → 𝑥 = 𝑧 ) | |
| 39 | 37 38 | syl6 | ⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑧 ) ) |
| 40 | 39 | expimpd | ⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) → 𝑥 = 𝑧 ) ) |
| 41 | 40 | com12 | ⊢ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 42 | 41 | ancoms | ⊢ ( ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 43 | 1 2 3 | prodmolem2 | ⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑧 ) ) |
| 44 | 43 | expimpd | ⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) → 𝑥 = 𝑧 ) ) |
| 45 | 44 | com12 | ⊢ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 46 | reeanv | ⊢ ( ∃ 𝑚 ∈ ℕ ∃ 𝑤 ∈ ℕ ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ↔ ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑤 ∈ ℕ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ) | |
| 47 | exdistrv | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ↔ ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ) | |
| 48 | 47 | 2rexbii | ⊢ ( ∃ 𝑚 ∈ ℕ ∃ 𝑤 ∈ ℕ ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑤 ∈ ℕ ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ) |
| 49 | oveq2 | ⊢ ( 𝑚 = 𝑤 → ( 1 ... 𝑚 ) = ( 1 ... 𝑤 ) ) | |
| 50 | 49 | f1oeq2d | ⊢ ( 𝑚 = 𝑤 → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ↔ 𝑓 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) ) |
| 51 | fveq2 | ⊢ ( 𝑚 = 𝑤 → ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) = ( seq 1 ( · , 𝐺 ) ‘ 𝑤 ) ) | |
| 52 | 51 | eqeq2d | ⊢ ( 𝑚 = 𝑤 → ( 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ↔ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑤 ) ) ) |
| 53 | 50 52 | anbi12d | ⊢ ( 𝑚 = 𝑤 → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑤 ) ) ) ) |
| 54 | 53 | exbidv | ⊢ ( 𝑚 = 𝑤 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑤 ) ) ) ) |
| 55 | f1oeq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ↔ 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) ) | |
| 56 | fveq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) | |
| 57 | 56 | csbeq1d | ⊢ ( 𝑓 = 𝑔 → ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) |
| 58 | 57 | mpteq2dv | ⊢ ( 𝑓 = 𝑔 → ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) |
| 59 | 3 58 | eqtrid | ⊢ ( 𝑓 = 𝑔 → 𝐺 = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) |
| 60 | 59 | seqeq3d | ⊢ ( 𝑓 = 𝑔 → seq 1 ( · , 𝐺 ) = seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ) |
| 61 | 60 | fveq1d | ⊢ ( 𝑓 = 𝑔 → ( seq 1 ( · , 𝐺 ) ‘ 𝑤 ) = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) |
| 62 | 61 | eqeq2d | ⊢ ( 𝑓 = 𝑔 → ( 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑤 ) ↔ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) |
| 63 | 55 62 | anbi12d | ⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑤 ) ) ↔ ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ) |
| 64 | 63 | cbvexvw | ⊢ ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑤 ) ) ↔ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) |
| 65 | 54 64 | bitrdi | ⊢ ( 𝑚 = 𝑤 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ↔ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ) |
| 66 | 65 | cbvrexvw | ⊢ ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ↔ ∃ 𝑤 ∈ ℕ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) |
| 67 | 66 | anbi2i | ⊢ ( ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ↔ ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑤 ∈ ℕ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ) |
| 68 | 46 48 67 | 3bitr4i | ⊢ ( ∃ 𝑚 ∈ ℕ ∃ 𝑤 ∈ ℕ ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ↔ ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) |
| 69 | an4 | ⊢ ( ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ↔ ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) ∧ ( 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) ) | |
| 70 | 2 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 71 | fveq2 | ⊢ ( 𝑗 = 𝑎 → ( 𝑓 ‘ 𝑗 ) = ( 𝑓 ‘ 𝑎 ) ) | |
| 72 | 71 | csbeq1d | ⊢ ( 𝑗 = 𝑎 → ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑎 ) / 𝑘 ⦌ 𝐵 ) |
| 73 | 72 | cbvmptv | ⊢ ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑎 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑎 ) / 𝑘 ⦌ 𝐵 ) |
| 74 | 3 73 | eqtri | ⊢ 𝐺 = ( 𝑎 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑎 ) / 𝑘 ⦌ 𝐵 ) |
| 75 | fveq2 | ⊢ ( 𝑗 = 𝑎 → ( 𝑔 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑎 ) ) | |
| 76 | 75 | csbeq1d | ⊢ ( 𝑗 = 𝑎 → ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑔 ‘ 𝑎 ) / 𝑘 ⦌ 𝐵 ) |
| 77 | 76 | cbvmptv | ⊢ ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑎 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑎 ) / 𝑘 ⦌ 𝐵 ) |
| 78 | simplr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) ) → ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) | |
| 79 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) | |
| 80 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) ) → 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) | |
| 81 | 1 70 74 77 78 79 80 | prodmolem3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) ) → ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) |
| 82 | eqeq12 | ⊢ ( ( 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) → ( 𝑥 = 𝑧 ↔ ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) | |
| 83 | 81 82 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) ) → ( ( 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) → 𝑥 = 𝑧 ) ) |
| 84 | 83 | expimpd | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ) ∧ ( 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) → 𝑥 = 𝑧 ) ) |
| 85 | 69 84 | biimtrid | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) → 𝑥 = 𝑧 ) ) |
| 86 | 85 | exlimdvv | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) → 𝑥 = 𝑧 ) ) |
| 87 | 86 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℕ ∃ 𝑤 ∈ ℕ ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑤 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑤 ) ) ) → 𝑥 = 𝑧 ) ) |
| 88 | 68 87 | biimtrrid | ⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) → 𝑥 = 𝑧 ) ) |
| 89 | 88 | com12 | ⊢ ( ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 90 | 36 42 45 89 | ccase | ⊢ ( ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 91 | 90 | com12 | ⊢ ( 𝜑 → ( ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) → 𝑥 = 𝑧 ) ) |
| 92 | 91 | alrimivv | ⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑧 ( ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) → 𝑥 = 𝑧 ) ) |
| 93 | breq2 | ⊢ ( 𝑥 = 𝑧 → ( seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ↔ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) | |
| 94 | 93 | 3anbi3d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ↔ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) |
| 95 | 94 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ↔ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ) ) |
| 96 | eqeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ↔ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) | |
| 97 | 96 | anbi2d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) |
| 98 | 97 | exbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) |
| 99 | 98 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) |
| 100 | 95 99 | orbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ↔ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) ) |
| 101 | 100 | mo4 | ⊢ ( ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑧 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) → 𝑥 = 𝑧 ) ) |
| 102 | 92 101 | sylibr | ⊢ ( 𝜑 → ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑚 ) ) ) ) |