This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prodmo . (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodmo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
|
| prodmo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| prodmo.3 | |- G = ( j e. NN |-> [_ ( f ` j ) / k ]_ B ) |
||
| prodmolem2.4 | |- H = ( j e. NN |-> [_ ( K ` j ) / k ]_ B ) |
||
| prodmolem2.5 | |- ( ph -> N e. NN ) |
||
| prodmolem2.6 | |- ( ph -> M e. ZZ ) |
||
| prodmolem2.7 | |- ( ph -> A C_ ( ZZ>= ` M ) ) |
||
| prodmolem2.8 | |- ( ph -> f : ( 1 ... N ) -1-1-onto-> A ) |
||
| prodmolem2.9 | |- ( ph -> K Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
||
| Assertion | prodmolem2a | |- ( ph -> seq M ( x. , F ) ~~> ( seq 1 ( x. , G ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodmo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
|
| 2 | prodmo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | prodmo.3 | |- G = ( j e. NN |-> [_ ( f ` j ) / k ]_ B ) |
|
| 4 | prodmolem2.4 | |- H = ( j e. NN |-> [_ ( K ` j ) / k ]_ B ) |
|
| 5 | prodmolem2.5 | |- ( ph -> N e. NN ) |
|
| 6 | prodmolem2.6 | |- ( ph -> M e. ZZ ) |
|
| 7 | prodmolem2.7 | |- ( ph -> A C_ ( ZZ>= ` M ) ) |
|
| 8 | prodmolem2.8 | |- ( ph -> f : ( 1 ... N ) -1-1-onto-> A ) |
|
| 9 | prodmolem2.9 | |- ( ph -> K Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
|
| 10 | fzfid | |- ( ph -> ( 1 ... N ) e. Fin ) |
|
| 11 | 10 8 | hasheqf1od | |- ( ph -> ( # ` ( 1 ... N ) ) = ( # ` A ) ) |
| 12 | 5 | nnnn0d | |- ( ph -> N e. NN0 ) |
| 13 | hashfz1 | |- ( N e. NN0 -> ( # ` ( 1 ... N ) ) = N ) |
|
| 14 | 12 13 | syl | |- ( ph -> ( # ` ( 1 ... N ) ) = N ) |
| 15 | 11 14 | eqtr3d | |- ( ph -> ( # ` A ) = N ) |
| 16 | 15 | oveq2d | |- ( ph -> ( 1 ... ( # ` A ) ) = ( 1 ... N ) ) |
| 17 | isoeq4 | |- ( ( 1 ... ( # ` A ) ) = ( 1 ... N ) -> ( K Isom < , < ( ( 1 ... ( # ` A ) ) , A ) <-> K Isom < , < ( ( 1 ... N ) , A ) ) ) |
|
| 18 | 16 17 | syl | |- ( ph -> ( K Isom < , < ( ( 1 ... ( # ` A ) ) , A ) <-> K Isom < , < ( ( 1 ... N ) , A ) ) ) |
| 19 | 9 18 | mpbid | |- ( ph -> K Isom < , < ( ( 1 ... N ) , A ) ) |
| 20 | isof1o | |- ( K Isom < , < ( ( 1 ... N ) , A ) -> K : ( 1 ... N ) -1-1-onto-> A ) |
|
| 21 | f1of | |- ( K : ( 1 ... N ) -1-1-onto-> A -> K : ( 1 ... N ) --> A ) |
|
| 22 | 19 20 21 | 3syl | |- ( ph -> K : ( 1 ... N ) --> A ) |
| 23 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 24 | 5 23 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` 1 ) ) |
| 25 | eluzfz2 | |- ( N e. ( ZZ>= ` 1 ) -> N e. ( 1 ... N ) ) |
|
| 26 | 24 25 | syl | |- ( ph -> N e. ( 1 ... N ) ) |
| 27 | 22 26 | ffvelcdmd | |- ( ph -> ( K ` N ) e. A ) |
| 28 | 7 27 | sseldd | |- ( ph -> ( K ` N ) e. ( ZZ>= ` M ) ) |
| 29 | 7 | sselda | |- ( ( ph /\ j e. A ) -> j e. ( ZZ>= ` M ) ) |
| 30 | 19 20 | syl | |- ( ph -> K : ( 1 ... N ) -1-1-onto-> A ) |
| 31 | f1ocnvfv2 | |- ( ( K : ( 1 ... N ) -1-1-onto-> A /\ j e. A ) -> ( K ` ( `' K ` j ) ) = j ) |
|
| 32 | 30 31 | sylan | |- ( ( ph /\ j e. A ) -> ( K ` ( `' K ` j ) ) = j ) |
| 33 | f1ocnv | |- ( K : ( 1 ... N ) -1-1-onto-> A -> `' K : A -1-1-onto-> ( 1 ... N ) ) |
|
| 34 | f1of | |- ( `' K : A -1-1-onto-> ( 1 ... N ) -> `' K : A --> ( 1 ... N ) ) |
|
| 35 | 30 33 34 | 3syl | |- ( ph -> `' K : A --> ( 1 ... N ) ) |
| 36 | 35 | ffvelcdmda | |- ( ( ph /\ j e. A ) -> ( `' K ` j ) e. ( 1 ... N ) ) |
| 37 | elfzle2 | |- ( ( `' K ` j ) e. ( 1 ... N ) -> ( `' K ` j ) <_ N ) |
|
| 38 | 36 37 | syl | |- ( ( ph /\ j e. A ) -> ( `' K ` j ) <_ N ) |
| 39 | 19 | adantr | |- ( ( ph /\ j e. A ) -> K Isom < , < ( ( 1 ... N ) , A ) ) |
| 40 | fzssuz | |- ( 1 ... N ) C_ ( ZZ>= ` 1 ) |
|
| 41 | uzssz | |- ( ZZ>= ` 1 ) C_ ZZ |
|
| 42 | zssre | |- ZZ C_ RR |
|
| 43 | 41 42 | sstri | |- ( ZZ>= ` 1 ) C_ RR |
| 44 | 40 43 | sstri | |- ( 1 ... N ) C_ RR |
| 45 | ressxr | |- RR C_ RR* |
|
| 46 | 44 45 | sstri | |- ( 1 ... N ) C_ RR* |
| 47 | 46 | a1i | |- ( ( ph /\ j e. A ) -> ( 1 ... N ) C_ RR* ) |
| 48 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 49 | 48 42 | sstri | |- ( ZZ>= ` M ) C_ RR |
| 50 | 49 45 | sstri | |- ( ZZ>= ` M ) C_ RR* |
| 51 | 7 50 | sstrdi | |- ( ph -> A C_ RR* ) |
| 52 | 51 | adantr | |- ( ( ph /\ j e. A ) -> A C_ RR* ) |
| 53 | 26 | adantr | |- ( ( ph /\ j e. A ) -> N e. ( 1 ... N ) ) |
| 54 | leisorel | |- ( ( K Isom < , < ( ( 1 ... N ) , A ) /\ ( ( 1 ... N ) C_ RR* /\ A C_ RR* ) /\ ( ( `' K ` j ) e. ( 1 ... N ) /\ N e. ( 1 ... N ) ) ) -> ( ( `' K ` j ) <_ N <-> ( K ` ( `' K ` j ) ) <_ ( K ` N ) ) ) |
|
| 55 | 39 47 52 36 53 54 | syl122anc | |- ( ( ph /\ j e. A ) -> ( ( `' K ` j ) <_ N <-> ( K ` ( `' K ` j ) ) <_ ( K ` N ) ) ) |
| 56 | 38 55 | mpbid | |- ( ( ph /\ j e. A ) -> ( K ` ( `' K ` j ) ) <_ ( K ` N ) ) |
| 57 | 32 56 | eqbrtrrd | |- ( ( ph /\ j e. A ) -> j <_ ( K ` N ) ) |
| 58 | 7 48 | sstrdi | |- ( ph -> A C_ ZZ ) |
| 59 | 58 | sselda | |- ( ( ph /\ j e. A ) -> j e. ZZ ) |
| 60 | eluzelz | |- ( ( K ` N ) e. ( ZZ>= ` M ) -> ( K ` N ) e. ZZ ) |
|
| 61 | 28 60 | syl | |- ( ph -> ( K ` N ) e. ZZ ) |
| 62 | 61 | adantr | |- ( ( ph /\ j e. A ) -> ( K ` N ) e. ZZ ) |
| 63 | eluz | |- ( ( j e. ZZ /\ ( K ` N ) e. ZZ ) -> ( ( K ` N ) e. ( ZZ>= ` j ) <-> j <_ ( K ` N ) ) ) |
|
| 64 | 59 62 63 | syl2anc | |- ( ( ph /\ j e. A ) -> ( ( K ` N ) e. ( ZZ>= ` j ) <-> j <_ ( K ` N ) ) ) |
| 65 | 57 64 | mpbird | |- ( ( ph /\ j e. A ) -> ( K ` N ) e. ( ZZ>= ` j ) ) |
| 66 | elfzuzb | |- ( j e. ( M ... ( K ` N ) ) <-> ( j e. ( ZZ>= ` M ) /\ ( K ` N ) e. ( ZZ>= ` j ) ) ) |
|
| 67 | 29 65 66 | sylanbrc | |- ( ( ph /\ j e. A ) -> j e. ( M ... ( K ` N ) ) ) |
| 68 | 67 | ex | |- ( ph -> ( j e. A -> j e. ( M ... ( K ` N ) ) ) ) |
| 69 | 68 | ssrdv | |- ( ph -> A C_ ( M ... ( K ` N ) ) ) |
| 70 | 1 2 28 69 | fprodcvg | |- ( ph -> seq M ( x. , F ) ~~> ( seq M ( x. , F ) ` ( K ` N ) ) ) |
| 71 | mullid | |- ( m e. CC -> ( 1 x. m ) = m ) |
|
| 72 | 71 | adantl | |- ( ( ph /\ m e. CC ) -> ( 1 x. m ) = m ) |
| 73 | mulrid | |- ( m e. CC -> ( m x. 1 ) = m ) |
|
| 74 | 73 | adantl | |- ( ( ph /\ m e. CC ) -> ( m x. 1 ) = m ) |
| 75 | mulcl | |- ( ( m e. CC /\ x e. CC ) -> ( m x. x ) e. CC ) |
|
| 76 | 75 | adantl | |- ( ( ph /\ ( m e. CC /\ x e. CC ) ) -> ( m x. x ) e. CC ) |
| 77 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 78 | 26 16 | eleqtrrd | |- ( ph -> N e. ( 1 ... ( # ` A ) ) ) |
| 79 | iftrue | |- ( k e. A -> if ( k e. A , B , 1 ) = B ) |
|
| 80 | 79 | adantl | |- ( ( ph /\ k e. A ) -> if ( k e. A , B , 1 ) = B ) |
| 81 | 80 2 | eqeltrd | |- ( ( ph /\ k e. A ) -> if ( k e. A , B , 1 ) e. CC ) |
| 82 | 81 | ex | |- ( ph -> ( k e. A -> if ( k e. A , B , 1 ) e. CC ) ) |
| 83 | iffalse | |- ( -. k e. A -> if ( k e. A , B , 1 ) = 1 ) |
|
| 84 | ax-1cn | |- 1 e. CC |
|
| 85 | 83 84 | eqeltrdi | |- ( -. k e. A -> if ( k e. A , B , 1 ) e. CC ) |
| 86 | 82 85 | pm2.61d1 | |- ( ph -> if ( k e. A , B , 1 ) e. CC ) |
| 87 | 86 | adantr | |- ( ( ph /\ k e. ZZ ) -> if ( k e. A , B , 1 ) e. CC ) |
| 88 | 87 1 | fmptd | |- ( ph -> F : ZZ --> CC ) |
| 89 | elfzelz | |- ( m e. ( M ... ( K ` ( # ` A ) ) ) -> m e. ZZ ) |
|
| 90 | ffvelcdm | |- ( ( F : ZZ --> CC /\ m e. ZZ ) -> ( F ` m ) e. CC ) |
|
| 91 | 88 89 90 | syl2an | |- ( ( ph /\ m e. ( M ... ( K ` ( # ` A ) ) ) ) -> ( F ` m ) e. CC ) |
| 92 | fveqeq2 | |- ( k = m -> ( ( F ` k ) = 1 <-> ( F ` m ) = 1 ) ) |
|
| 93 | eldifi | |- ( k e. ( ( M ... ( K ` ( # ` A ) ) ) \ A ) -> k e. ( M ... ( K ` ( # ` A ) ) ) ) |
|
| 94 | 93 | elfzelzd | |- ( k e. ( ( M ... ( K ` ( # ` A ) ) ) \ A ) -> k e. ZZ ) |
| 95 | eldifn | |- ( k e. ( ( M ... ( K ` ( # ` A ) ) ) \ A ) -> -. k e. A ) |
|
| 96 | 95 83 | syl | |- ( k e. ( ( M ... ( K ` ( # ` A ) ) ) \ A ) -> if ( k e. A , B , 1 ) = 1 ) |
| 97 | 96 84 | eqeltrdi | |- ( k e. ( ( M ... ( K ` ( # ` A ) ) ) \ A ) -> if ( k e. A , B , 1 ) e. CC ) |
| 98 | 1 | fvmpt2 | |- ( ( k e. ZZ /\ if ( k e. A , B , 1 ) e. CC ) -> ( F ` k ) = if ( k e. A , B , 1 ) ) |
| 99 | 94 97 98 | syl2anc | |- ( k e. ( ( M ... ( K ` ( # ` A ) ) ) \ A ) -> ( F ` k ) = if ( k e. A , B , 1 ) ) |
| 100 | 99 96 | eqtrd | |- ( k e. ( ( M ... ( K ` ( # ` A ) ) ) \ A ) -> ( F ` k ) = 1 ) |
| 101 | 92 100 | vtoclga | |- ( m e. ( ( M ... ( K ` ( # ` A ) ) ) \ A ) -> ( F ` m ) = 1 ) |
| 102 | 101 | adantl | |- ( ( ph /\ m e. ( ( M ... ( K ` ( # ` A ) ) ) \ A ) ) -> ( F ` m ) = 1 ) |
| 103 | isof1o | |- ( K Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> K : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
|
| 104 | f1of | |- ( K : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> K : ( 1 ... ( # ` A ) ) --> A ) |
|
| 105 | 9 103 104 | 3syl | |- ( ph -> K : ( 1 ... ( # ` A ) ) --> A ) |
| 106 | 105 | ffvelcdmda | |- ( ( ph /\ x e. ( 1 ... ( # ` A ) ) ) -> ( K ` x ) e. A ) |
| 107 | 106 | iftrued | |- ( ( ph /\ x e. ( 1 ... ( # ` A ) ) ) -> if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) = [_ ( K ` x ) / k ]_ B ) |
| 108 | 58 | adantr | |- ( ( ph /\ x e. ( 1 ... ( # ` A ) ) ) -> A C_ ZZ ) |
| 109 | 108 106 | sseldd | |- ( ( ph /\ x e. ( 1 ... ( # ` A ) ) ) -> ( K ` x ) e. ZZ ) |
| 110 | nfv | |- F/ k ph |
|
| 111 | nfv | |- F/ k ( K ` x ) e. A |
|
| 112 | nfcsb1v | |- F/_ k [_ ( K ` x ) / k ]_ B |
|
| 113 | nfcv | |- F/_ k 1 |
|
| 114 | 111 112 113 | nfif | |- F/_ k if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) |
| 115 | 114 | nfel1 | |- F/ k if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) e. CC |
| 116 | 110 115 | nfim | |- F/ k ( ph -> if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) e. CC ) |
| 117 | fvex | |- ( K ` x ) e. _V |
|
| 118 | eleq1 | |- ( k = ( K ` x ) -> ( k e. A <-> ( K ` x ) e. A ) ) |
|
| 119 | csbeq1a | |- ( k = ( K ` x ) -> B = [_ ( K ` x ) / k ]_ B ) |
|
| 120 | 118 119 | ifbieq1d | |- ( k = ( K ` x ) -> if ( k e. A , B , 1 ) = if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) ) |
| 121 | 120 | eleq1d | |- ( k = ( K ` x ) -> ( if ( k e. A , B , 1 ) e. CC <-> if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) e. CC ) ) |
| 122 | 121 | imbi2d | |- ( k = ( K ` x ) -> ( ( ph -> if ( k e. A , B , 1 ) e. CC ) <-> ( ph -> if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) e. CC ) ) ) |
| 123 | 116 117 122 86 | vtoclf | |- ( ph -> if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) e. CC ) |
| 124 | 123 | adantr | |- ( ( ph /\ x e. ( 1 ... ( # ` A ) ) ) -> if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) e. CC ) |
| 125 | eleq1 | |- ( n = ( K ` x ) -> ( n e. A <-> ( K ` x ) e. A ) ) |
|
| 126 | csbeq1 | |- ( n = ( K ` x ) -> [_ n / k ]_ B = [_ ( K ` x ) / k ]_ B ) |
|
| 127 | 125 126 | ifbieq1d | |- ( n = ( K ` x ) -> if ( n e. A , [_ n / k ]_ B , 1 ) = if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) ) |
| 128 | nfcv | |- F/_ n if ( k e. A , B , 1 ) |
|
| 129 | nfv | |- F/ k n e. A |
|
| 130 | nfcsb1v | |- F/_ k [_ n / k ]_ B |
|
| 131 | 129 130 113 | nfif | |- F/_ k if ( n e. A , [_ n / k ]_ B , 1 ) |
| 132 | eleq1 | |- ( k = n -> ( k e. A <-> n e. A ) ) |
|
| 133 | csbeq1a | |- ( k = n -> B = [_ n / k ]_ B ) |
|
| 134 | 132 133 | ifbieq1d | |- ( k = n -> if ( k e. A , B , 1 ) = if ( n e. A , [_ n / k ]_ B , 1 ) ) |
| 135 | 128 131 134 | cbvmpt | |- ( k e. ZZ |-> if ( k e. A , B , 1 ) ) = ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 1 ) ) |
| 136 | 1 135 | eqtri | |- F = ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 1 ) ) |
| 137 | 127 136 | fvmptg | |- ( ( ( K ` x ) e. ZZ /\ if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) e. CC ) -> ( F ` ( K ` x ) ) = if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) ) |
| 138 | 109 124 137 | syl2anc | |- ( ( ph /\ x e. ( 1 ... ( # ` A ) ) ) -> ( F ` ( K ` x ) ) = if ( ( K ` x ) e. A , [_ ( K ` x ) / k ]_ B , 1 ) ) |
| 139 | elfznn | |- ( x e. ( 1 ... ( # ` A ) ) -> x e. NN ) |
|
| 140 | 107 124 | eqeltrrd | |- ( ( ph /\ x e. ( 1 ... ( # ` A ) ) ) -> [_ ( K ` x ) / k ]_ B e. CC ) |
| 141 | fveq2 | |- ( j = x -> ( K ` j ) = ( K ` x ) ) |
|
| 142 | 141 | csbeq1d | |- ( j = x -> [_ ( K ` j ) / k ]_ B = [_ ( K ` x ) / k ]_ B ) |
| 143 | 142 4 | fvmptg | |- ( ( x e. NN /\ [_ ( K ` x ) / k ]_ B e. CC ) -> ( H ` x ) = [_ ( K ` x ) / k ]_ B ) |
| 144 | 139 140 143 | syl2an2 | |- ( ( ph /\ x e. ( 1 ... ( # ` A ) ) ) -> ( H ` x ) = [_ ( K ` x ) / k ]_ B ) |
| 145 | 107 138 144 | 3eqtr4rd | |- ( ( ph /\ x e. ( 1 ... ( # ` A ) ) ) -> ( H ` x ) = ( F ` ( K ` x ) ) ) |
| 146 | 72 74 76 77 9 78 7 91 102 145 | seqcoll | |- ( ph -> ( seq M ( x. , F ) ` ( K ` N ) ) = ( seq 1 ( x. , H ) ` N ) ) |
| 147 | 5 5 | jca | |- ( ph -> ( N e. NN /\ N e. NN ) ) |
| 148 | 1 2 3 4 147 8 30 | prodmolem3 | |- ( ph -> ( seq 1 ( x. , G ) ` N ) = ( seq 1 ( x. , H ) ` N ) ) |
| 149 | 146 148 | eqtr4d | |- ( ph -> ( seq M ( x. , F ) ` ( K ` N ) ) = ( seq 1 ( x. , G ) ` N ) ) |
| 150 | 70 149 | breqtrd | |- ( ph -> seq M ( x. , F ) ~~> ( seq 1 ( x. , G ) ` N ) ) |