This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the dyadic rational function F . (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dyadmbl.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) | |
| Assertion | dyadval | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 𝐹 𝐵 ) = 〈 ( 𝐴 / ( 2 ↑ 𝐵 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dyadmbl.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) | |
| 2 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 3 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 2 ↑ 𝑦 ) = ( 2 ↑ 𝐵 ) ) | |
| 4 | 2 3 | oveqan12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 / ( 2 ↑ 𝑦 ) ) = ( 𝐴 / ( 2 ↑ 𝐵 ) ) ) |
| 5 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 + 1 ) = ( 𝐴 + 1 ) ) | |
| 6 | 5 3 | oveqan12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) = ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) ) |
| 7 | 4 6 | opeq12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 = 〈 ( 𝐴 / ( 2 ↑ 𝐵 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) 〉 ) |
| 8 | opex | ⊢ 〈 ( 𝐴 / ( 2 ↑ 𝐵 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) 〉 ∈ V | |
| 9 | 7 1 8 | ovmpoa | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 𝐹 𝐵 ) = 〈 ( 𝐴 / ( 2 ↑ 𝐵 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐵 ) ) 〉 ) |