This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A basic property of the floor (greatest integer) function. (Contributed by NM, 15-Nov-2004) (Revised by Mario Carneiro, 2-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fllelt | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flval | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) ) | |
| 2 | 1 | eqcomd | ⊢ ( 𝐴 ∈ ℝ → ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) = ( ⌊ ‘ 𝐴 ) ) |
| 3 | flcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) | |
| 4 | rebtwnz | ⊢ ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) | |
| 5 | breq1 | ⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( 𝑥 ≤ 𝐴 ↔ ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) ) | |
| 6 | oveq1 | ⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( 𝑥 + 1 ) = ( ( ⌊ ‘ 𝐴 ) + 1 ) ) | |
| 7 | 6 | breq2d | ⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( 𝐴 < ( 𝑥 + 1 ) ↔ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
| 8 | 5 7 | anbi12d | ⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ↔ ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) ) |
| 9 | 8 | riota2 | ⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) = ( ⌊ ‘ 𝐴 ) ) ) |
| 10 | 3 4 9 | syl2anc | ⊢ ( 𝐴 ∈ ℝ → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) = ( ⌊ ‘ 𝐴 ) ) ) |
| 11 | 2 10 | mpbird | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |