This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of exponentiation with a base greater than 1 has no positive lower bound. (Contributed by NM, 18-Jul-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expnlbnd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) → ∃ 𝑘 ∈ ℕ ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) | |
| 2 | rpne0 | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≠ 0 ) | |
| 3 | 1 2 | rereccld | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℝ ) |
| 4 | expnbnd | ⊢ ( ( ( 1 / 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) → ∃ 𝑘 ∈ ℕ ( 1 / 𝐴 ) < ( 𝐵 ↑ 𝑘 ) ) | |
| 5 | 3 4 | syl3an1 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) → ∃ 𝑘 ∈ ℕ ( 1 / 𝐴 ) < ( 𝐵 ↑ 𝑘 ) ) |
| 6 | rpregt0 | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) | |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 8 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 9 | reexpcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑘 ) ∈ ℝ ) | |
| 10 | 8 9 | sylan2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 𝐵 ↑ 𝑘 ) ∈ ℝ ) |
| 11 | 10 | adantlr | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐵 ↑ 𝑘 ) ∈ ℝ ) |
| 12 | simpll | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ 𝑘 ∈ ℕ ) → 𝐵 ∈ ℝ ) | |
| 13 | nnz | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) | |
| 14 | 13 | adantl | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℤ ) |
| 15 | 0lt1 | ⊢ 0 < 1 | |
| 16 | 0re | ⊢ 0 ∈ ℝ | |
| 17 | 1re | ⊢ 1 ∈ ℝ | |
| 18 | lttr | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 < 𝐵 ) → 0 < 𝐵 ) ) | |
| 19 | 16 17 18 | mp3an12 | ⊢ ( 𝐵 ∈ ℝ → ( ( 0 < 1 ∧ 1 < 𝐵 ) → 0 < 𝐵 ) ) |
| 20 | 15 19 | mpani | ⊢ ( 𝐵 ∈ ℝ → ( 1 < 𝐵 → 0 < 𝐵 ) ) |
| 21 | 20 | imp | ⊢ ( ( 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) → 0 < 𝐵 ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ 𝑘 ∈ ℕ ) → 0 < 𝐵 ) |
| 23 | expgt0 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < 𝐵 ) → 0 < ( 𝐵 ↑ 𝑘 ) ) | |
| 24 | 12 14 22 23 | syl3anc | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ 𝑘 ∈ ℕ ) → 0 < ( 𝐵 ↑ 𝑘 ) ) |
| 25 | 11 24 | jca | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐵 ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( 𝐵 ↑ 𝑘 ) ) ) |
| 26 | 25 | 3adantl1 | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐵 ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( 𝐵 ↑ 𝑘 ) ) ) |
| 27 | ltrec1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( ( 𝐵 ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( 𝐵 ↑ 𝑘 ) ) ) → ( ( 1 / 𝐴 ) < ( 𝐵 ↑ 𝑘 ) ↔ ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) ) | |
| 28 | 7 26 27 | syl2an2r | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝐴 ) < ( 𝐵 ↑ 𝑘 ) ↔ ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) ) |
| 29 | 28 | rexbidva | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) → ( ∃ 𝑘 ∈ ℕ ( 1 / 𝐴 ) < ( 𝐵 ↑ 𝑘 ) ↔ ∃ 𝑘 ∈ ℕ ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) ) |
| 30 | 5 29 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) → ∃ 𝑘 ∈ ℕ ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) |