This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal exponentiation compared to its exponent. Proposition 8.37 of TakeutiZaring p. 68. Lemma 3.20 of Schloeder p. 10. (Contributed by NM, 7-Jan-2005) (Revised by Mario Carneiro, 24-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oeworde | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → 𝐵 ⊆ ( 𝐴 ↑o 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝑥 = ∅ → 𝑥 = ∅ ) | |
| 2 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o ∅ ) ) | |
| 3 | 1 2 | sseq12d | ⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ ( 𝐴 ↑o 𝑥 ) ↔ ∅ ⊆ ( 𝐴 ↑o ∅ ) ) ) |
| 4 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 5 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝑦 ) ) | |
| 6 | 4 5 | sseq12d | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ ( 𝐴 ↑o 𝑥 ) ↔ 𝑦 ⊆ ( 𝐴 ↑o 𝑦 ) ) ) |
| 7 | id | ⊢ ( 𝑥 = suc 𝑦 → 𝑥 = suc 𝑦 ) | |
| 8 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o suc 𝑦 ) ) | |
| 9 | 7 8 | sseq12d | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ⊆ ( 𝐴 ↑o 𝑥 ) ↔ suc 𝑦 ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 10 | id | ⊢ ( 𝑥 = 𝐵 → 𝑥 = 𝐵 ) | |
| 11 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝐵 ) ) | |
| 12 | 10 11 | sseq12d | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ⊆ ( 𝐴 ↑o 𝑥 ) ↔ 𝐵 ⊆ ( 𝐴 ↑o 𝐵 ) ) ) |
| 13 | 0ss | ⊢ ∅ ⊆ ( 𝐴 ↑o ∅ ) | |
| 14 | 13 | a1i | ⊢ ( 𝐴 ∈ ( On ∖ 2o ) → ∅ ⊆ ( 𝐴 ↑o ∅ ) ) |
| 15 | eloni | ⊢ ( 𝑦 ∈ On → Ord 𝑦 ) | |
| 16 | eldifi | ⊢ ( 𝐴 ∈ ( On ∖ 2o ) → 𝐴 ∈ On ) | |
| 17 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o 𝑦 ) ∈ On ) | |
| 18 | 16 17 | sylan | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o 𝑦 ) ∈ On ) |
| 19 | eloni | ⊢ ( ( 𝐴 ↑o 𝑦 ) ∈ On → Ord ( 𝐴 ↑o 𝑦 ) ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → Ord ( 𝐴 ↑o 𝑦 ) ) |
| 21 | ordsucsssuc | ⊢ ( ( Ord 𝑦 ∧ Ord ( 𝐴 ↑o 𝑦 ) ) → ( 𝑦 ⊆ ( 𝐴 ↑o 𝑦 ) ↔ suc 𝑦 ⊆ suc ( 𝐴 ↑o 𝑦 ) ) ) | |
| 22 | 15 20 21 | syl2an2 | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 𝑦 ⊆ ( 𝐴 ↑o 𝑦 ) ↔ suc 𝑦 ⊆ suc ( 𝐴 ↑o 𝑦 ) ) ) |
| 23 | onsuc | ⊢ ( 𝑦 ∈ On → suc 𝑦 ∈ On ) | |
| 24 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ suc 𝑦 ∈ On ) → ( 𝐴 ↑o suc 𝑦 ) ∈ On ) | |
| 25 | 16 23 24 | syl2an | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o suc 𝑦 ) ∈ On ) |
| 26 | eloni | ⊢ ( ( 𝐴 ↑o suc 𝑦 ) ∈ On → Ord ( 𝐴 ↑o suc 𝑦 ) ) | |
| 27 | 25 26 | syl | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → Ord ( 𝐴 ↑o suc 𝑦 ) ) |
| 28 | id | ⊢ ( 𝐴 ∈ ( On ∖ 2o ) → 𝐴 ∈ ( On ∖ 2o ) ) | |
| 29 | vex | ⊢ 𝑦 ∈ V | |
| 30 | 29 | sucid | ⊢ 𝑦 ∈ suc 𝑦 |
| 31 | oeordi | ⊢ ( ( suc 𝑦 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝑦 ∈ suc 𝑦 → ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o suc 𝑦 ) ) ) | |
| 32 | 30 31 | mpi | ⊢ ( ( suc 𝑦 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o suc 𝑦 ) ) |
| 33 | 23 28 32 | syl2anr | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o suc 𝑦 ) ) |
| 34 | ordsucss | ⊢ ( Ord ( 𝐴 ↑o suc 𝑦 ) → ( ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o suc 𝑦 ) → suc ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) | |
| 35 | 27 33 34 | sylc | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → suc ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) ) |
| 36 | sstr2 | ⊢ ( suc 𝑦 ⊆ suc ( 𝐴 ↑o 𝑦 ) → ( suc ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) → suc 𝑦 ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) | |
| 37 | 35 36 | syl5com | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( suc 𝑦 ⊆ suc ( 𝐴 ↑o 𝑦 ) → suc 𝑦 ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 38 | 22 37 | sylbid | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 𝑦 ⊆ ( 𝐴 ↑o 𝑦 ) → suc 𝑦 ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 39 | 38 | expcom | ⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ ( On ∖ 2o ) → ( 𝑦 ⊆ ( 𝐴 ↑o 𝑦 ) → suc 𝑦 ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) ) |
| 40 | dif20el | ⊢ ( 𝐴 ∈ ( On ∖ 2o ) → ∅ ∈ 𝐴 ) | |
| 41 | 16 40 | jca | ⊢ ( 𝐴 ∈ ( On ∖ 2o ) → ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) |
| 42 | ss2iun | ⊢ ( ∀ 𝑦 ∈ 𝑥 𝑦 ⊆ ( 𝐴 ↑o 𝑦 ) → ∪ 𝑦 ∈ 𝑥 𝑦 ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) | |
| 43 | limuni | ⊢ ( Lim 𝑥 → 𝑥 = ∪ 𝑥 ) | |
| 44 | uniiun | ⊢ ∪ 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 | |
| 45 | 43 44 | eqtrdi | ⊢ ( Lim 𝑥 → 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 ) |
| 46 | 45 | adantr | ⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 ) |
| 47 | vex | ⊢ 𝑥 ∈ V | |
| 48 | oelim | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) | |
| 49 | 47 48 | mpanlr1 | ⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 50 | 49 | anasss | ⊢ ( ( 𝐴 ∈ On ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐴 ) ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 51 | 50 | an12s | ⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 52 | 46 51 | sseq12d | ⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → ( 𝑥 ⊆ ( 𝐴 ↑o 𝑥 ) ↔ ∪ 𝑦 ∈ 𝑥 𝑦 ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) ) |
| 53 | 42 52 | imbitrrid | ⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝑥 𝑦 ⊆ ( 𝐴 ↑o 𝑦 ) → 𝑥 ⊆ ( 𝐴 ↑o 𝑥 ) ) ) |
| 54 | 53 | ex | ⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝑥 𝑦 ⊆ ( 𝐴 ↑o 𝑦 ) → 𝑥 ⊆ ( 𝐴 ↑o 𝑥 ) ) ) ) |
| 55 | 41 54 | syl5 | ⊢ ( Lim 𝑥 → ( 𝐴 ∈ ( On ∖ 2o ) → ( ∀ 𝑦 ∈ 𝑥 𝑦 ⊆ ( 𝐴 ↑o 𝑦 ) → 𝑥 ⊆ ( 𝐴 ↑o 𝑥 ) ) ) ) |
| 56 | 3 6 9 12 14 39 55 | tfinds3 | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ ( On ∖ 2o ) → 𝐵 ⊆ ( 𝐴 ↑o 𝐵 ) ) ) |
| 57 | 56 | impcom | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → 𝐵 ⊆ ( 𝐴 ↑o 𝐵 ) ) |