This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal exponentiation with a limit exponent and nonzero base. Definition 8.30 of TakeutiZaring p. 67. Definition 2.6 of Schloeder p. 4. (Contributed by NM, 1-Jan-2005) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oelim | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ↑o 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limelon | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → 𝐵 ∈ On ) | |
| 2 | simpr | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → Lim 𝐵 ) | |
| 3 | 1 2 | jca | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) |
| 4 | rdglim2a | ⊢ ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) → ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝑥 ) ) | |
| 5 | 4 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝑥 ) ) |
| 6 | oevn0 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) | |
| 7 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) | |
| 8 | oevn0 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝑥 ) ) | |
| 9 | 7 8 | sylanl2 | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝑥 ) ) |
| 10 | 9 | exp42 | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝑥 ∈ 𝐵 → ( ∅ ∈ 𝐴 → ( 𝐴 ↑o 𝑥 ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝑥 ) ) ) ) ) |
| 11 | 10 | com34 | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( ∅ ∈ 𝐴 → ( 𝑥 ∈ 𝐵 → ( 𝐴 ↑o 𝑥 ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝑥 ) ) ) ) ) |
| 12 | 11 | imp41 | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ↑o 𝑥 ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝑥 ) ) |
| 13 | 12 | iuneq2dv | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∪ 𝑥 ∈ 𝐵 ( 𝐴 ↑o 𝑥 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝑥 ) ) |
| 14 | 6 13 | eqeq12d | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ↑o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ↑o 𝑥 ) ↔ ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝑥 ) ) ) |
| 15 | 14 | adantlrr | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ↑o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ↑o 𝑥 ) ↔ ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 ·o 𝐴 ) ) , 1o ) ‘ 𝑥 ) ) ) |
| 16 | 5 15 | mpbird | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ↑o 𝑥 ) ) |
| 17 | 3 16 | sylanl2 | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ↑o 𝑥 ) ) |