This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between division and multiplication. (Contributed by NM, 2-Aug-2004) (Revised by Mario Carneiro, 17-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) = 𝐵 ↔ ( 𝐶 · 𝐵 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐴 / 𝐶 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐶 · 𝑥 ) = 𝐴 ) ) | |
| 2 | 1 | 3expb | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 / 𝐶 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐶 · 𝑥 ) = 𝐴 ) ) |
| 3 | 2 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 / 𝐶 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐶 · 𝑥 ) = 𝐴 ) ) |
| 4 | 3 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) = 𝐵 ↔ ( ℩ 𝑥 ∈ ℂ ( 𝐶 · 𝑥 ) = 𝐴 ) = 𝐵 ) ) |
| 5 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐵 ∈ ℂ ) | |
| 6 | receu | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ∃! 𝑥 ∈ ℂ ( 𝐶 · 𝑥 ) = 𝐴 ) | |
| 7 | 6 | 3expb | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ∃! 𝑥 ∈ ℂ ( 𝐶 · 𝑥 ) = 𝐴 ) |
| 8 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝐵 ) ) | |
| 9 | 8 | eqeq1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐶 · 𝑥 ) = 𝐴 ↔ ( 𝐶 · 𝐵 ) = 𝐴 ) ) |
| 10 | 9 | riota2 | ⊢ ( ( 𝐵 ∈ ℂ ∧ ∃! 𝑥 ∈ ℂ ( 𝐶 · 𝑥 ) = 𝐴 ) → ( ( 𝐶 · 𝐵 ) = 𝐴 ↔ ( ℩ 𝑥 ∈ ℂ ( 𝐶 · 𝑥 ) = 𝐴 ) = 𝐵 ) ) |
| 11 | 5 7 10 | 3imp3i2an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 · 𝐵 ) = 𝐴 ↔ ( ℩ 𝑥 ∈ ℂ ( 𝐶 · 𝑥 ) = 𝐴 ) = 𝐵 ) ) |
| 12 | 4 11 | bitr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) = 𝐵 ↔ ( 𝐶 · 𝐵 ) = 𝐴 ) ) |