This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the divides relation. M || N means M divides into N with no remainder. For example, 3 || 6 ( ex-dvds ). As proven in dvdsval3 , M || N <-> ( N mod M ) = 0 . See divides and dvdsval2 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divides | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br | ⊢ ( 𝑀 ∥ 𝑁 ↔ 〈 𝑀 , 𝑁 〉 ∈ ∥ ) | |
| 2 | df-dvds | ⊢ ∥ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑥 ) = 𝑦 ) } | |
| 3 | 2 | eleq2i | ⊢ ( 〈 𝑀 , 𝑁 〉 ∈ ∥ ↔ 〈 𝑀 , 𝑁 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑥 ) = 𝑦 ) } ) |
| 4 | 1 3 | bitri | ⊢ ( 𝑀 ∥ 𝑁 ↔ 〈 𝑀 , 𝑁 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑥 ) = 𝑦 ) } ) |
| 5 | oveq2 | ⊢ ( 𝑥 = 𝑀 → ( 𝑛 · 𝑥 ) = ( 𝑛 · 𝑀 ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝑛 · 𝑥 ) = 𝑦 ↔ ( 𝑛 · 𝑀 ) = 𝑦 ) ) |
| 7 | 6 | rexbidv | ⊢ ( 𝑥 = 𝑀 → ( ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑥 ) = 𝑦 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = 𝑦 ) ) |
| 8 | eqeq2 | ⊢ ( 𝑦 = 𝑁 → ( ( 𝑛 · 𝑀 ) = 𝑦 ↔ ( 𝑛 · 𝑀 ) = 𝑁 ) ) | |
| 9 | 8 | rexbidv | ⊢ ( 𝑦 = 𝑁 → ( ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = 𝑦 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = 𝑁 ) ) |
| 10 | 7 9 | opelopab2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 〈 𝑀 , 𝑁 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑥 ) = 𝑦 ) } ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = 𝑁 ) ) |
| 11 | 4 10 | bitrid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = 𝑁 ) ) |