This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elznn0 | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ) | |
| 2 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 3 | 2 | a1i | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) |
| 4 | elnn0 | ⊢ ( - 𝑁 ∈ ℕ0 ↔ ( - 𝑁 ∈ ℕ ∨ - 𝑁 = 0 ) ) | |
| 5 | recn | ⊢ ( 𝑁 ∈ ℝ → 𝑁 ∈ ℂ ) | |
| 6 | 0cn | ⊢ 0 ∈ ℂ | |
| 7 | negcon1 | ⊢ ( ( 𝑁 ∈ ℂ ∧ 0 ∈ ℂ ) → ( - 𝑁 = 0 ↔ - 0 = 𝑁 ) ) | |
| 8 | 5 6 7 | sylancl | ⊢ ( 𝑁 ∈ ℝ → ( - 𝑁 = 0 ↔ - 0 = 𝑁 ) ) |
| 9 | neg0 | ⊢ - 0 = 0 | |
| 10 | 9 | eqeq1i | ⊢ ( - 0 = 𝑁 ↔ 0 = 𝑁 ) |
| 11 | eqcom | ⊢ ( 0 = 𝑁 ↔ 𝑁 = 0 ) | |
| 12 | 10 11 | bitri | ⊢ ( - 0 = 𝑁 ↔ 𝑁 = 0 ) |
| 13 | 8 12 | bitrdi | ⊢ ( 𝑁 ∈ ℝ → ( - 𝑁 = 0 ↔ 𝑁 = 0 ) ) |
| 14 | 13 | orbi2d | ⊢ ( 𝑁 ∈ ℝ → ( ( - 𝑁 ∈ ℕ ∨ - 𝑁 = 0 ) ↔ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) |
| 15 | 4 14 | bitrid | ⊢ ( 𝑁 ∈ ℝ → ( - 𝑁 ∈ ℕ0 ↔ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) |
| 16 | 3 15 | orbi12d | ⊢ ( 𝑁 ∈ ℝ → ( ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ↔ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) ) |
| 17 | 3orass | ⊢ ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ↔ ( 𝑁 = 0 ∨ ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ) | |
| 18 | orcom | ⊢ ( ( 𝑁 = 0 ∨ ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ↔ ( ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ∨ 𝑁 = 0 ) ) | |
| 19 | orordir | ⊢ ( ( ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ∨ 𝑁 = 0 ) ↔ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) | |
| 20 | 17 18 19 | 3bitrri | ⊢ ( ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ↔ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) |
| 21 | 16 20 | bitr2di | ⊢ ( 𝑁 ∈ ℝ → ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ↔ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ) |
| 22 | 21 | pm5.32i | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ) |
| 23 | 1 22 | bitri | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ) |