This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative-type law for addition and subtraction. (Contributed by NM, 6-Aug-2003) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addsubass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐶 ) = ( 𝐴 + ( 𝐵 − 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 2 | subcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) | |
| 3 | 2 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
| 4 | simp3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) | |
| 5 | 1 3 4 | addassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + ( 𝐵 − 𝐶 ) ) + 𝐶 ) = ( 𝐴 + ( ( 𝐵 − 𝐶 ) + 𝐶 ) ) ) |
| 6 | npcan | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 − 𝐶 ) + 𝐶 ) = 𝐵 ) | |
| 7 | 6 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 − 𝐶 ) + 𝐶 ) = 𝐵 ) |
| 8 | 7 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + ( ( 𝐵 − 𝐶 ) + 𝐶 ) ) = ( 𝐴 + 𝐵 ) ) |
| 9 | 5 8 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + ( 𝐵 − 𝐶 ) ) + 𝐶 ) = ( 𝐴 + 𝐵 ) ) |
| 10 | 9 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 + ( 𝐵 − 𝐶 ) ) + 𝐶 ) − 𝐶 ) = ( ( 𝐴 + 𝐵 ) − 𝐶 ) ) |
| 11 | 1 3 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + ( 𝐵 − 𝐶 ) ) ∈ ℂ ) |
| 12 | pncan | ⊢ ( ( ( 𝐴 + ( 𝐵 − 𝐶 ) ) ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 + ( 𝐵 − 𝐶 ) ) + 𝐶 ) − 𝐶 ) = ( 𝐴 + ( 𝐵 − 𝐶 ) ) ) | |
| 13 | 11 4 12 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 + ( 𝐵 − 𝐶 ) ) + 𝐶 ) − 𝐶 ) = ( 𝐴 + ( 𝐵 − 𝐶 ) ) ) |
| 14 | 10 13 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐶 ) = ( 𝐴 + ( 𝐵 − 𝐶 ) ) ) |