This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is even iff it is twice another integer. (Contributed by AV, 25-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | even2n | ⊢ ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evenelz | ⊢ ( 2 ∥ 𝑁 → 𝑁 ∈ ℤ ) | |
| 2 | 2z | ⊢ 2 ∈ ℤ | |
| 3 | 2 | a1i | ⊢ ( 𝑛 ∈ ℤ → 2 ∈ ℤ ) |
| 4 | id | ⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℤ ) | |
| 5 | 3 4 | zmulcld | ⊢ ( 𝑛 ∈ ℤ → ( 2 · 𝑛 ) ∈ ℤ ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑛 ∈ ℤ ∧ ( 2 · 𝑛 ) = 𝑁 ) → ( 2 · 𝑛 ) ∈ ℤ ) |
| 7 | eleq1 | ⊢ ( ( 2 · 𝑛 ) = 𝑁 → ( ( 2 · 𝑛 ) ∈ ℤ ↔ 𝑁 ∈ ℤ ) ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝑛 ∈ ℤ ∧ ( 2 · 𝑛 ) = 𝑁 ) → ( ( 2 · 𝑛 ) ∈ ℤ ↔ 𝑁 ∈ ℤ ) ) |
| 9 | 6 8 | mpbid | ⊢ ( ( 𝑛 ∈ ℤ ∧ ( 2 · 𝑛 ) = 𝑁 ) → 𝑁 ∈ ℤ ) |
| 10 | 9 | rexlimiva | ⊢ ( ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 → 𝑁 ∈ ℤ ) |
| 11 | divides | ⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 2 ) = 𝑁 ) ) | |
| 12 | zcn | ⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) | |
| 13 | 2cnd | ⊢ ( 𝑛 ∈ ℤ → 2 ∈ ℂ ) | |
| 14 | 12 13 | mulcomd | ⊢ ( 𝑛 ∈ ℤ → ( 𝑛 · 2 ) = ( 2 · 𝑛 ) ) |
| 15 | 14 | eqeq1d | ⊢ ( 𝑛 ∈ ℤ → ( ( 𝑛 · 2 ) = 𝑁 ↔ ( 2 · 𝑛 ) = 𝑁 ) ) |
| 16 | 15 | rexbiia | ⊢ ( ∃ 𝑛 ∈ ℤ ( 𝑛 · 2 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 ) |
| 17 | 11 16 | bitrdi | ⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 ) ) |
| 18 | 2 17 | mpan | ⊢ ( 𝑁 ∈ ℤ → ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 ) ) |
| 19 | 1 10 18 | pm5.21nii | ⊢ ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 ) |