This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for negative integers. (Contributed by NM, 9-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | znegcl | ⊢ ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ) | |
| 2 | negeq | ⊢ ( 𝑁 = 0 → - 𝑁 = - 0 ) | |
| 3 | neg0 | ⊢ - 0 = 0 | |
| 4 | 2 3 | eqtrdi | ⊢ ( 𝑁 = 0 → - 𝑁 = 0 ) |
| 5 | 0z | ⊢ 0 ∈ ℤ | |
| 6 | 4 5 | eqeltrdi | ⊢ ( 𝑁 = 0 → - 𝑁 ∈ ℤ ) |
| 7 | nnnegz | ⊢ ( 𝑁 ∈ ℕ → - 𝑁 ∈ ℤ ) | |
| 8 | nnz | ⊢ ( - 𝑁 ∈ ℕ → - 𝑁 ∈ ℤ ) | |
| 9 | 6 7 8 | 3jaoi | ⊢ ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) → - 𝑁 ∈ ℤ ) |
| 10 | 1 9 | simplbiim | ⊢ ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ ) |