This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for oawordex . (Contributed by NM, 11-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oawordeulem.1 | ⊢ 𝐴 ∈ On | |
| oawordeulem.2 | ⊢ 𝐵 ∈ On | ||
| oawordeulem.3 | ⊢ 𝑆 = { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } | ||
| Assertion | oawordeulem | ⊢ ( 𝐴 ⊆ 𝐵 → ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oawordeulem.1 | ⊢ 𝐴 ∈ On | |
| 2 | oawordeulem.2 | ⊢ 𝐵 ∈ On | |
| 3 | oawordeulem.3 | ⊢ 𝑆 = { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } | |
| 4 | 3 | ssrab3 | ⊢ 𝑆 ⊆ On |
| 5 | oaword2 | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → 𝐵 ⊆ ( 𝐴 +o 𝐵 ) ) | |
| 6 | 2 1 5 | mp2an | ⊢ 𝐵 ⊆ ( 𝐴 +o 𝐵 ) |
| 7 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 +o 𝑦 ) = ( 𝐴 +o 𝐵 ) ) | |
| 8 | 7 | sseq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝐵 ⊆ ( 𝐴 +o 𝑦 ) ↔ 𝐵 ⊆ ( 𝐴 +o 𝐵 ) ) ) |
| 9 | 8 3 | elrab2 | ⊢ ( 𝐵 ∈ 𝑆 ↔ ( 𝐵 ∈ On ∧ 𝐵 ⊆ ( 𝐴 +o 𝐵 ) ) ) |
| 10 | 2 6 9 | mpbir2an | ⊢ 𝐵 ∈ 𝑆 |
| 11 | 10 | ne0ii | ⊢ 𝑆 ≠ ∅ |
| 12 | oninton | ⊢ ( ( 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ On ) | |
| 13 | 4 11 12 | mp2an | ⊢ ∩ 𝑆 ∈ On |
| 14 | onzsl | ⊢ ( ∩ 𝑆 ∈ On ↔ ( ∩ 𝑆 = ∅ ∨ ∃ 𝑧 ∈ On ∩ 𝑆 = suc 𝑧 ∨ ( ∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆 ) ) ) | |
| 15 | 13 14 | mpbi | ⊢ ( ∩ 𝑆 = ∅ ∨ ∃ 𝑧 ∈ On ∩ 𝑆 = suc 𝑧 ∨ ( ∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆 ) ) |
| 16 | oveq2 | ⊢ ( ∩ 𝑆 = ∅ → ( 𝐴 +o ∩ 𝑆 ) = ( 𝐴 +o ∅ ) ) | |
| 17 | oa0 | ⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = 𝐴 ) | |
| 18 | 1 17 | ax-mp | ⊢ ( 𝐴 +o ∅ ) = 𝐴 |
| 19 | 16 18 | eqtrdi | ⊢ ( ∩ 𝑆 = ∅ → ( 𝐴 +o ∩ 𝑆 ) = 𝐴 ) |
| 20 | 19 | sseq1d | ⊢ ( ∩ 𝑆 = ∅ → ( ( 𝐴 +o ∩ 𝑆 ) ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |
| 21 | 20 | biimprd | ⊢ ( ∩ 𝑆 = ∅ → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o ∩ 𝑆 ) ⊆ 𝐵 ) ) |
| 22 | oveq2 | ⊢ ( ∩ 𝑆 = suc 𝑧 → ( 𝐴 +o ∩ 𝑆 ) = ( 𝐴 +o suc 𝑧 ) ) | |
| 23 | oasuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝑧 ∈ On ) → ( 𝐴 +o suc 𝑧 ) = suc ( 𝐴 +o 𝑧 ) ) | |
| 24 | 1 23 | mpan | ⊢ ( 𝑧 ∈ On → ( 𝐴 +o suc 𝑧 ) = suc ( 𝐴 +o 𝑧 ) ) |
| 25 | 22 24 | sylan9eqr | ⊢ ( ( 𝑧 ∈ On ∧ ∩ 𝑆 = suc 𝑧 ) → ( 𝐴 +o ∩ 𝑆 ) = suc ( 𝐴 +o 𝑧 ) ) |
| 26 | vex | ⊢ 𝑧 ∈ V | |
| 27 | 26 | sucid | ⊢ 𝑧 ∈ suc 𝑧 |
| 28 | eleq2 | ⊢ ( ∩ 𝑆 = suc 𝑧 → ( 𝑧 ∈ ∩ 𝑆 ↔ 𝑧 ∈ suc 𝑧 ) ) | |
| 29 | 27 28 | mpbiri | ⊢ ( ∩ 𝑆 = suc 𝑧 → 𝑧 ∈ ∩ 𝑆 ) |
| 30 | 13 | oneli | ⊢ ( 𝑧 ∈ ∩ 𝑆 → 𝑧 ∈ On ) |
| 31 | 3 | inteqi | ⊢ ∩ 𝑆 = ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } |
| 32 | 31 | eleq2i | ⊢ ( 𝑧 ∈ ∩ 𝑆 ↔ 𝑧 ∈ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) |
| 33 | oveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝐴 +o 𝑦 ) = ( 𝐴 +o 𝑧 ) ) | |
| 34 | 33 | sseq2d | ⊢ ( 𝑦 = 𝑧 → ( 𝐵 ⊆ ( 𝐴 +o 𝑦 ) ↔ 𝐵 ⊆ ( 𝐴 +o 𝑧 ) ) ) |
| 35 | 34 | onnminsb | ⊢ ( 𝑧 ∈ On → ( 𝑧 ∈ ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } → ¬ 𝐵 ⊆ ( 𝐴 +o 𝑧 ) ) ) |
| 36 | 32 35 | biimtrid | ⊢ ( 𝑧 ∈ On → ( 𝑧 ∈ ∩ 𝑆 → ¬ 𝐵 ⊆ ( 𝐴 +o 𝑧 ) ) ) |
| 37 | oacl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑧 ∈ On ) → ( 𝐴 +o 𝑧 ) ∈ On ) | |
| 38 | 1 37 | mpan | ⊢ ( 𝑧 ∈ On → ( 𝐴 +o 𝑧 ) ∈ On ) |
| 39 | ontri1 | ⊢ ( ( 𝐵 ∈ On ∧ ( 𝐴 +o 𝑧 ) ∈ On ) → ( 𝐵 ⊆ ( 𝐴 +o 𝑧 ) ↔ ¬ ( 𝐴 +o 𝑧 ) ∈ 𝐵 ) ) | |
| 40 | 2 38 39 | sylancr | ⊢ ( 𝑧 ∈ On → ( 𝐵 ⊆ ( 𝐴 +o 𝑧 ) ↔ ¬ ( 𝐴 +o 𝑧 ) ∈ 𝐵 ) ) |
| 41 | 40 | con2bid | ⊢ ( 𝑧 ∈ On → ( ( 𝐴 +o 𝑧 ) ∈ 𝐵 ↔ ¬ 𝐵 ⊆ ( 𝐴 +o 𝑧 ) ) ) |
| 42 | 36 41 | sylibrd | ⊢ ( 𝑧 ∈ On → ( 𝑧 ∈ ∩ 𝑆 → ( 𝐴 +o 𝑧 ) ∈ 𝐵 ) ) |
| 43 | 30 42 | mpcom | ⊢ ( 𝑧 ∈ ∩ 𝑆 → ( 𝐴 +o 𝑧 ) ∈ 𝐵 ) |
| 44 | 2 | onordi | ⊢ Ord 𝐵 |
| 45 | ordsucss | ⊢ ( Ord 𝐵 → ( ( 𝐴 +o 𝑧 ) ∈ 𝐵 → suc ( 𝐴 +o 𝑧 ) ⊆ 𝐵 ) ) | |
| 46 | 44 45 | ax-mp | ⊢ ( ( 𝐴 +o 𝑧 ) ∈ 𝐵 → suc ( 𝐴 +o 𝑧 ) ⊆ 𝐵 ) |
| 47 | 29 43 46 | 3syl | ⊢ ( ∩ 𝑆 = suc 𝑧 → suc ( 𝐴 +o 𝑧 ) ⊆ 𝐵 ) |
| 48 | 47 | adantl | ⊢ ( ( 𝑧 ∈ On ∧ ∩ 𝑆 = suc 𝑧 ) → suc ( 𝐴 +o 𝑧 ) ⊆ 𝐵 ) |
| 49 | 25 48 | eqsstrd | ⊢ ( ( 𝑧 ∈ On ∧ ∩ 𝑆 = suc 𝑧 ) → ( 𝐴 +o ∩ 𝑆 ) ⊆ 𝐵 ) |
| 50 | 49 | rexlimiva | ⊢ ( ∃ 𝑧 ∈ On ∩ 𝑆 = suc 𝑧 → ( 𝐴 +o ∩ 𝑆 ) ⊆ 𝐵 ) |
| 51 | 50 | a1d | ⊢ ( ∃ 𝑧 ∈ On ∩ 𝑆 = suc 𝑧 → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o ∩ 𝑆 ) ⊆ 𝐵 ) ) |
| 52 | oalim | ⊢ ( ( 𝐴 ∈ On ∧ ( ∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆 ) ) → ( 𝐴 +o ∩ 𝑆 ) = ∪ 𝑧 ∈ ∩ 𝑆 ( 𝐴 +o 𝑧 ) ) | |
| 53 | 1 52 | mpan | ⊢ ( ( ∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆 ) → ( 𝐴 +o ∩ 𝑆 ) = ∪ 𝑧 ∈ ∩ 𝑆 ( 𝐴 +o 𝑧 ) ) |
| 54 | iunss | ⊢ ( ∪ 𝑧 ∈ ∩ 𝑆 ( 𝐴 +o 𝑧 ) ⊆ 𝐵 ↔ ∀ 𝑧 ∈ ∩ 𝑆 ( 𝐴 +o 𝑧 ) ⊆ 𝐵 ) | |
| 55 | 2 | onelssi | ⊢ ( ( 𝐴 +o 𝑧 ) ∈ 𝐵 → ( 𝐴 +o 𝑧 ) ⊆ 𝐵 ) |
| 56 | 43 55 | syl | ⊢ ( 𝑧 ∈ ∩ 𝑆 → ( 𝐴 +o 𝑧 ) ⊆ 𝐵 ) |
| 57 | 54 56 | mprgbir | ⊢ ∪ 𝑧 ∈ ∩ 𝑆 ( 𝐴 +o 𝑧 ) ⊆ 𝐵 |
| 58 | 53 57 | eqsstrdi | ⊢ ( ( ∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆 ) → ( 𝐴 +o ∩ 𝑆 ) ⊆ 𝐵 ) |
| 59 | 58 | a1d | ⊢ ( ( ∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆 ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o ∩ 𝑆 ) ⊆ 𝐵 ) ) |
| 60 | 21 51 59 | 3jaoi | ⊢ ( ( ∩ 𝑆 = ∅ ∨ ∃ 𝑧 ∈ On ∩ 𝑆 = suc 𝑧 ∨ ( ∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆 ) ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o ∩ 𝑆 ) ⊆ 𝐵 ) ) |
| 61 | 15 60 | ax-mp | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o ∩ 𝑆 ) ⊆ 𝐵 ) |
| 62 | 8 | rspcev | ⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ⊆ ( 𝐴 +o 𝐵 ) ) → ∃ 𝑦 ∈ On 𝐵 ⊆ ( 𝐴 +o 𝑦 ) ) |
| 63 | 2 6 62 | mp2an | ⊢ ∃ 𝑦 ∈ On 𝐵 ⊆ ( 𝐴 +o 𝑦 ) |
| 64 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
| 65 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 66 | nfcv | ⊢ Ⅎ 𝑦 +o | |
| 67 | nfrab1 | ⊢ Ⅎ 𝑦 { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } | |
| 68 | 67 | nfint | ⊢ Ⅎ 𝑦 ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } |
| 69 | 65 66 68 | nfov | ⊢ Ⅎ 𝑦 ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) |
| 70 | 64 69 | nfss | ⊢ Ⅎ 𝑦 𝐵 ⊆ ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) |
| 71 | oveq2 | ⊢ ( 𝑦 = ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } → ( 𝐴 +o 𝑦 ) = ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ) | |
| 72 | 71 | sseq2d | ⊢ ( 𝑦 = ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } → ( 𝐵 ⊆ ( 𝐴 +o 𝑦 ) ↔ 𝐵 ⊆ ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ) ) |
| 73 | 70 72 | onminsb | ⊢ ( ∃ 𝑦 ∈ On 𝐵 ⊆ ( 𝐴 +o 𝑦 ) → 𝐵 ⊆ ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) ) |
| 74 | 63 73 | ax-mp | ⊢ 𝐵 ⊆ ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) |
| 75 | 31 | oveq2i | ⊢ ( 𝐴 +o ∩ 𝑆 ) = ( 𝐴 +o ∩ { 𝑦 ∈ On ∣ 𝐵 ⊆ ( 𝐴 +o 𝑦 ) } ) |
| 76 | 74 75 | sseqtrri | ⊢ 𝐵 ⊆ ( 𝐴 +o ∩ 𝑆 ) |
| 77 | eqss | ⊢ ( ( 𝐴 +o ∩ 𝑆 ) = 𝐵 ↔ ( ( 𝐴 +o ∩ 𝑆 ) ⊆ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 +o ∩ 𝑆 ) ) ) | |
| 78 | 61 76 77 | sylanblrc | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o ∩ 𝑆 ) = 𝐵 ) |
| 79 | oveq2 | ⊢ ( 𝑥 = ∩ 𝑆 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o ∩ 𝑆 ) ) | |
| 80 | 79 | eqeq1d | ⊢ ( 𝑥 = ∩ 𝑆 → ( ( 𝐴 +o 𝑥 ) = 𝐵 ↔ ( 𝐴 +o ∩ 𝑆 ) = 𝐵 ) ) |
| 81 | 80 | rspcev | ⊢ ( ( ∩ 𝑆 ∈ On ∧ ( 𝐴 +o ∩ 𝑆 ) = 𝐵 ) → ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) |
| 82 | 13 78 81 | sylancr | ⊢ ( 𝐴 ⊆ 𝐵 → ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) |
| 83 | eqtr3 | ⊢ ( ( ( 𝐴 +o 𝑥 ) = 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑦 ) ) | |
| 84 | oacan | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑦 ) ↔ 𝑥 = 𝑦 ) ) | |
| 85 | 1 84 | mp3an1 | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
| 86 | 83 85 | imbitrid | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( ( ( 𝐴 +o 𝑥 ) = 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) → 𝑥 = 𝑦 ) ) |
| 87 | 86 | rgen2 | ⊢ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( ( ( 𝐴 +o 𝑥 ) = 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) → 𝑥 = 𝑦 ) |
| 88 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑦 ) ) | |
| 89 | 88 | eqeq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 +o 𝑥 ) = 𝐵 ↔ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) |
| 90 | 89 | reu4 | ⊢ ( ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ↔ ( ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ∧ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( ( ( 𝐴 +o 𝑥 ) = 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) → 𝑥 = 𝑦 ) ) ) |
| 91 | 82 87 90 | sylanblrc | ⊢ ( 𝐴 ⊆ 𝐵 → ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) |