This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for oawordex . (Contributed by NM, 11-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oawordeulem.1 | |- A e. On |
|
| oawordeulem.2 | |- B e. On |
||
| oawordeulem.3 | |- S = { y e. On | B C_ ( A +o y ) } |
||
| Assertion | oawordeulem | |- ( A C_ B -> E! x e. On ( A +o x ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oawordeulem.1 | |- A e. On |
|
| 2 | oawordeulem.2 | |- B e. On |
|
| 3 | oawordeulem.3 | |- S = { y e. On | B C_ ( A +o y ) } |
|
| 4 | 3 | ssrab3 | |- S C_ On |
| 5 | oaword2 | |- ( ( B e. On /\ A e. On ) -> B C_ ( A +o B ) ) |
|
| 6 | 2 1 5 | mp2an | |- B C_ ( A +o B ) |
| 7 | oveq2 | |- ( y = B -> ( A +o y ) = ( A +o B ) ) |
|
| 8 | 7 | sseq2d | |- ( y = B -> ( B C_ ( A +o y ) <-> B C_ ( A +o B ) ) ) |
| 9 | 8 3 | elrab2 | |- ( B e. S <-> ( B e. On /\ B C_ ( A +o B ) ) ) |
| 10 | 2 6 9 | mpbir2an | |- B e. S |
| 11 | 10 | ne0ii | |- S =/= (/) |
| 12 | oninton | |- ( ( S C_ On /\ S =/= (/) ) -> |^| S e. On ) |
|
| 13 | 4 11 12 | mp2an | |- |^| S e. On |
| 14 | onzsl | |- ( |^| S e. On <-> ( |^| S = (/) \/ E. z e. On |^| S = suc z \/ ( |^| S e. _V /\ Lim |^| S ) ) ) |
|
| 15 | 13 14 | mpbi | |- ( |^| S = (/) \/ E. z e. On |^| S = suc z \/ ( |^| S e. _V /\ Lim |^| S ) ) |
| 16 | oveq2 | |- ( |^| S = (/) -> ( A +o |^| S ) = ( A +o (/) ) ) |
|
| 17 | oa0 | |- ( A e. On -> ( A +o (/) ) = A ) |
|
| 18 | 1 17 | ax-mp | |- ( A +o (/) ) = A |
| 19 | 16 18 | eqtrdi | |- ( |^| S = (/) -> ( A +o |^| S ) = A ) |
| 20 | 19 | sseq1d | |- ( |^| S = (/) -> ( ( A +o |^| S ) C_ B <-> A C_ B ) ) |
| 21 | 20 | biimprd | |- ( |^| S = (/) -> ( A C_ B -> ( A +o |^| S ) C_ B ) ) |
| 22 | oveq2 | |- ( |^| S = suc z -> ( A +o |^| S ) = ( A +o suc z ) ) |
|
| 23 | oasuc | |- ( ( A e. On /\ z e. On ) -> ( A +o suc z ) = suc ( A +o z ) ) |
|
| 24 | 1 23 | mpan | |- ( z e. On -> ( A +o suc z ) = suc ( A +o z ) ) |
| 25 | 22 24 | sylan9eqr | |- ( ( z e. On /\ |^| S = suc z ) -> ( A +o |^| S ) = suc ( A +o z ) ) |
| 26 | vex | |- z e. _V |
|
| 27 | 26 | sucid | |- z e. suc z |
| 28 | eleq2 | |- ( |^| S = suc z -> ( z e. |^| S <-> z e. suc z ) ) |
|
| 29 | 27 28 | mpbiri | |- ( |^| S = suc z -> z e. |^| S ) |
| 30 | 13 | oneli | |- ( z e. |^| S -> z e. On ) |
| 31 | 3 | inteqi | |- |^| S = |^| { y e. On | B C_ ( A +o y ) } |
| 32 | 31 | eleq2i | |- ( z e. |^| S <-> z e. |^| { y e. On | B C_ ( A +o y ) } ) |
| 33 | oveq2 | |- ( y = z -> ( A +o y ) = ( A +o z ) ) |
|
| 34 | 33 | sseq2d | |- ( y = z -> ( B C_ ( A +o y ) <-> B C_ ( A +o z ) ) ) |
| 35 | 34 | onnminsb | |- ( z e. On -> ( z e. |^| { y e. On | B C_ ( A +o y ) } -> -. B C_ ( A +o z ) ) ) |
| 36 | 32 35 | biimtrid | |- ( z e. On -> ( z e. |^| S -> -. B C_ ( A +o z ) ) ) |
| 37 | oacl | |- ( ( A e. On /\ z e. On ) -> ( A +o z ) e. On ) |
|
| 38 | 1 37 | mpan | |- ( z e. On -> ( A +o z ) e. On ) |
| 39 | ontri1 | |- ( ( B e. On /\ ( A +o z ) e. On ) -> ( B C_ ( A +o z ) <-> -. ( A +o z ) e. B ) ) |
|
| 40 | 2 38 39 | sylancr | |- ( z e. On -> ( B C_ ( A +o z ) <-> -. ( A +o z ) e. B ) ) |
| 41 | 40 | con2bid | |- ( z e. On -> ( ( A +o z ) e. B <-> -. B C_ ( A +o z ) ) ) |
| 42 | 36 41 | sylibrd | |- ( z e. On -> ( z e. |^| S -> ( A +o z ) e. B ) ) |
| 43 | 30 42 | mpcom | |- ( z e. |^| S -> ( A +o z ) e. B ) |
| 44 | 2 | onordi | |- Ord B |
| 45 | ordsucss | |- ( Ord B -> ( ( A +o z ) e. B -> suc ( A +o z ) C_ B ) ) |
|
| 46 | 44 45 | ax-mp | |- ( ( A +o z ) e. B -> suc ( A +o z ) C_ B ) |
| 47 | 29 43 46 | 3syl | |- ( |^| S = suc z -> suc ( A +o z ) C_ B ) |
| 48 | 47 | adantl | |- ( ( z e. On /\ |^| S = suc z ) -> suc ( A +o z ) C_ B ) |
| 49 | 25 48 | eqsstrd | |- ( ( z e. On /\ |^| S = suc z ) -> ( A +o |^| S ) C_ B ) |
| 50 | 49 | rexlimiva | |- ( E. z e. On |^| S = suc z -> ( A +o |^| S ) C_ B ) |
| 51 | 50 | a1d | |- ( E. z e. On |^| S = suc z -> ( A C_ B -> ( A +o |^| S ) C_ B ) ) |
| 52 | oalim | |- ( ( A e. On /\ ( |^| S e. _V /\ Lim |^| S ) ) -> ( A +o |^| S ) = U_ z e. |^| S ( A +o z ) ) |
|
| 53 | 1 52 | mpan | |- ( ( |^| S e. _V /\ Lim |^| S ) -> ( A +o |^| S ) = U_ z e. |^| S ( A +o z ) ) |
| 54 | iunss | |- ( U_ z e. |^| S ( A +o z ) C_ B <-> A. z e. |^| S ( A +o z ) C_ B ) |
|
| 55 | 2 | onelssi | |- ( ( A +o z ) e. B -> ( A +o z ) C_ B ) |
| 56 | 43 55 | syl | |- ( z e. |^| S -> ( A +o z ) C_ B ) |
| 57 | 54 56 | mprgbir | |- U_ z e. |^| S ( A +o z ) C_ B |
| 58 | 53 57 | eqsstrdi | |- ( ( |^| S e. _V /\ Lim |^| S ) -> ( A +o |^| S ) C_ B ) |
| 59 | 58 | a1d | |- ( ( |^| S e. _V /\ Lim |^| S ) -> ( A C_ B -> ( A +o |^| S ) C_ B ) ) |
| 60 | 21 51 59 | 3jaoi | |- ( ( |^| S = (/) \/ E. z e. On |^| S = suc z \/ ( |^| S e. _V /\ Lim |^| S ) ) -> ( A C_ B -> ( A +o |^| S ) C_ B ) ) |
| 61 | 15 60 | ax-mp | |- ( A C_ B -> ( A +o |^| S ) C_ B ) |
| 62 | 8 | rspcev | |- ( ( B e. On /\ B C_ ( A +o B ) ) -> E. y e. On B C_ ( A +o y ) ) |
| 63 | 2 6 62 | mp2an | |- E. y e. On B C_ ( A +o y ) |
| 64 | nfcv | |- F/_ y B |
|
| 65 | nfcv | |- F/_ y A |
|
| 66 | nfcv | |- F/_ y +o |
|
| 67 | nfrab1 | |- F/_ y { y e. On | B C_ ( A +o y ) } |
|
| 68 | 67 | nfint | |- F/_ y |^| { y e. On | B C_ ( A +o y ) } |
| 69 | 65 66 68 | nfov | |- F/_ y ( A +o |^| { y e. On | B C_ ( A +o y ) } ) |
| 70 | 64 69 | nfss | |- F/ y B C_ ( A +o |^| { y e. On | B C_ ( A +o y ) } ) |
| 71 | oveq2 | |- ( y = |^| { y e. On | B C_ ( A +o y ) } -> ( A +o y ) = ( A +o |^| { y e. On | B C_ ( A +o y ) } ) ) |
|
| 72 | 71 | sseq2d | |- ( y = |^| { y e. On | B C_ ( A +o y ) } -> ( B C_ ( A +o y ) <-> B C_ ( A +o |^| { y e. On | B C_ ( A +o y ) } ) ) ) |
| 73 | 70 72 | onminsb | |- ( E. y e. On B C_ ( A +o y ) -> B C_ ( A +o |^| { y e. On | B C_ ( A +o y ) } ) ) |
| 74 | 63 73 | ax-mp | |- B C_ ( A +o |^| { y e. On | B C_ ( A +o y ) } ) |
| 75 | 31 | oveq2i | |- ( A +o |^| S ) = ( A +o |^| { y e. On | B C_ ( A +o y ) } ) |
| 76 | 74 75 | sseqtrri | |- B C_ ( A +o |^| S ) |
| 77 | eqss | |- ( ( A +o |^| S ) = B <-> ( ( A +o |^| S ) C_ B /\ B C_ ( A +o |^| S ) ) ) |
|
| 78 | 61 76 77 | sylanblrc | |- ( A C_ B -> ( A +o |^| S ) = B ) |
| 79 | oveq2 | |- ( x = |^| S -> ( A +o x ) = ( A +o |^| S ) ) |
|
| 80 | 79 | eqeq1d | |- ( x = |^| S -> ( ( A +o x ) = B <-> ( A +o |^| S ) = B ) ) |
| 81 | 80 | rspcev | |- ( ( |^| S e. On /\ ( A +o |^| S ) = B ) -> E. x e. On ( A +o x ) = B ) |
| 82 | 13 78 81 | sylancr | |- ( A C_ B -> E. x e. On ( A +o x ) = B ) |
| 83 | eqtr3 | |- ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> ( A +o x ) = ( A +o y ) ) |
|
| 84 | oacan | |- ( ( A e. On /\ x e. On /\ y e. On ) -> ( ( A +o x ) = ( A +o y ) <-> x = y ) ) |
|
| 85 | 1 84 | mp3an1 | |- ( ( x e. On /\ y e. On ) -> ( ( A +o x ) = ( A +o y ) <-> x = y ) ) |
| 86 | 83 85 | imbitrid | |- ( ( x e. On /\ y e. On ) -> ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) ) |
| 87 | 86 | rgen2 | |- A. x e. On A. y e. On ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) |
| 88 | oveq2 | |- ( x = y -> ( A +o x ) = ( A +o y ) ) |
|
| 89 | 88 | eqeq1d | |- ( x = y -> ( ( A +o x ) = B <-> ( A +o y ) = B ) ) |
| 90 | 89 | reu4 | |- ( E! x e. On ( A +o x ) = B <-> ( E. x e. On ( A +o x ) = B /\ A. x e. On A. y e. On ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) ) ) |
| 91 | 82 87 90 | sylanblrc | |- ( A C_ B -> E! x e. On ( A +o x ) = B ) |