This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses implicit substitution. Theorem Schema 62 of Suppes p. 228. (Contributed by NM, 3-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | onminsb.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| onminsb.2 | ⊢ ( 𝑥 = ∩ { 𝑥 ∈ On ∣ 𝜑 } → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | onminsb | ⊢ ( ∃ 𝑥 ∈ On 𝜑 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onminsb.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | onminsb.2 | ⊢ ( 𝑥 = ∩ { 𝑥 ∈ On ∣ 𝜑 } → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | rabn0 | ⊢ ( { 𝑥 ∈ On ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 ∈ On 𝜑 ) | |
| 4 | ssrab2 | ⊢ { 𝑥 ∈ On ∣ 𝜑 } ⊆ On | |
| 5 | onint | ⊢ ( ( { 𝑥 ∈ On ∣ 𝜑 } ⊆ On ∧ { 𝑥 ∈ On ∣ 𝜑 } ≠ ∅ ) → ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ { 𝑥 ∈ On ∣ 𝜑 } ) | |
| 6 | 4 5 | mpan | ⊢ ( { 𝑥 ∈ On ∣ 𝜑 } ≠ ∅ → ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ { 𝑥 ∈ On ∣ 𝜑 } ) |
| 7 | 3 6 | sylbir | ⊢ ( ∃ 𝑥 ∈ On 𝜑 → ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ { 𝑥 ∈ On ∣ 𝜑 } ) |
| 8 | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∈ On ∣ 𝜑 } | |
| 9 | 8 | nfint | ⊢ Ⅎ 𝑥 ∩ { 𝑥 ∈ On ∣ 𝜑 } |
| 10 | nfcv | ⊢ Ⅎ 𝑥 On | |
| 11 | 9 10 1 2 | elrabf | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ { 𝑥 ∈ On ∣ 𝜑 } ↔ ( ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ On ∧ 𝜓 ) ) |
| 12 | 11 | simprbi | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝜑 } ∈ { 𝑥 ∈ On ∣ 𝜑 } → 𝜓 ) |
| 13 | 7 12 | syl | ⊢ ( ∃ 𝑥 ∈ On 𝜑 → 𝜓 ) |