This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left cancellation law for ordinal addition. Corollary 8.5 of TakeutiZaring p. 58. (Contributed by NM, 5-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oacan | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 +o 𝐵 ) = ( 𝐴 +o 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oaord | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ 𝐶 ↔ ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ) ) | |
| 2 | 1 | 3comr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ 𝐶 ↔ ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ) ) |
| 3 | oaord | ⊢ ( ( 𝐶 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐶 ∈ 𝐵 ↔ ( 𝐴 +o 𝐶 ) ∈ ( 𝐴 +o 𝐵 ) ) ) | |
| 4 | 3 | 3com13 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐶 ∈ 𝐵 ↔ ( 𝐴 +o 𝐶 ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
| 5 | 2 4 | orbi12d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ↔ ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ∨ ( 𝐴 +o 𝐶 ) ∈ ( 𝐴 +o 𝐵 ) ) ) ) |
| 6 | 5 | notbid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ↔ ¬ ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ∨ ( 𝐴 +o 𝐶 ) ∈ ( 𝐴 +o 𝐵 ) ) ) ) |
| 7 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 8 | eloni | ⊢ ( 𝐶 ∈ On → Ord 𝐶 ) | |
| 9 | ordtri3 | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) | |
| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
| 11 | 10 | 3adant1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
| 12 | oacl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ∈ On ) | |
| 13 | eloni | ⊢ ( ( 𝐴 +o 𝐵 ) ∈ On → Ord ( 𝐴 +o 𝐵 ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord ( 𝐴 +o 𝐵 ) ) |
| 15 | oacl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 +o 𝐶 ) ∈ On ) | |
| 16 | eloni | ⊢ ( ( 𝐴 +o 𝐶 ) ∈ On → Ord ( 𝐴 +o 𝐶 ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → Ord ( 𝐴 +o 𝐶 ) ) |
| 18 | ordtri3 | ⊢ ( ( Ord ( 𝐴 +o 𝐵 ) ∧ Ord ( 𝐴 +o 𝐶 ) ) → ( ( 𝐴 +o 𝐵 ) = ( 𝐴 +o 𝐶 ) ↔ ¬ ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ∨ ( 𝐴 +o 𝐶 ) ∈ ( 𝐴 +o 𝐵 ) ) ) ) | |
| 19 | 14 17 18 | syl2an | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ) → ( ( 𝐴 +o 𝐵 ) = ( 𝐴 +o 𝐶 ) ↔ ¬ ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ∨ ( 𝐴 +o 𝐶 ) ∈ ( 𝐴 +o 𝐵 ) ) ) ) |
| 20 | 19 | 3impdi | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 +o 𝐵 ) = ( 𝐴 +o 𝐶 ) ↔ ¬ ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ∨ ( 𝐴 +o 𝐶 ) ∈ ( 𝐴 +o 𝐵 ) ) ) ) |
| 21 | 6 11 20 | 3bitr4rd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 +o 𝐵 ) = ( 𝐴 +o 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |