This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate definition of a limit ordinal, which is any ordinal that is neither zero nor a successor. (Contributed by NM, 1-Nov-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dflim3 | ⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ¬ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lim | ⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ) | |
| 2 | 3anass | ⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ↔ ( Ord 𝐴 ∧ ( 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ) ) | |
| 3 | df-ne | ⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) | |
| 4 | 3 | a1i | ⊢ ( Ord 𝐴 → ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) ) |
| 5 | orduninsuc | ⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) | |
| 6 | 4 5 | anbi12d | ⊢ ( Ord 𝐴 → ( ( 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ↔ ( ¬ 𝐴 = ∅ ∧ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ) |
| 7 | ioran | ⊢ ( ¬ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ↔ ( ¬ 𝐴 = ∅ ∧ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) | |
| 8 | 6 7 | bitr4di | ⊢ ( Ord 𝐴 → ( ( 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ↔ ¬ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ) |
| 9 | 8 | pm5.32i | ⊢ ( ( Ord 𝐴 ∧ ( 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ) ↔ ( Ord 𝐴 ∧ ¬ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ) |
| 10 | 1 2 9 | 3bitri | ⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ¬ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ) |