This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal sum is zero iff both of its arguments are zero. Lemma 3.10 of Schloeder p. 8. (Contributed by NM, 6-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oa00 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on0eln0 | ⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 3 | oaword1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐴 +o 𝐵 ) ) | |
| 4 | 3 | sseld | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ 𝐴 → ∅ ∈ ( 𝐴 +o 𝐵 ) ) ) |
| 5 | 2 4 | sylbird | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ≠ ∅ → ∅ ∈ ( 𝐴 +o 𝐵 ) ) ) |
| 6 | ne0i | ⊢ ( ∅ ∈ ( 𝐴 +o 𝐵 ) → ( 𝐴 +o 𝐵 ) ≠ ∅ ) | |
| 7 | 5 6 | syl6 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ≠ ∅ → ( 𝐴 +o 𝐵 ) ≠ ∅ ) ) |
| 8 | 7 | necon4d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) = ∅ → 𝐴 = ∅ ) ) |
| 9 | on0eln0 | ⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
| 11 | 0elon | ⊢ ∅ ∈ On | |
| 12 | oaord | ⊢ ( ( ∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐵 ↔ ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) ) ) | |
| 13 | 11 12 | mp3an1 | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐵 ↔ ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
| 14 | 13 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ 𝐵 ↔ ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
| 15 | 10 14 | bitr3d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ≠ ∅ ↔ ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
| 16 | ne0i | ⊢ ( ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) → ( 𝐴 +o 𝐵 ) ≠ ∅ ) | |
| 17 | 15 16 | biimtrdi | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ≠ ∅ → ( 𝐴 +o 𝐵 ) ≠ ∅ ) ) |
| 18 | 17 | necon4d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) = ∅ → 𝐵 = ∅ ) ) |
| 19 | 8 18 | jcad | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) = ∅ → ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) |
| 20 | oveq12 | ⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( 𝐴 +o 𝐵 ) = ( ∅ +o ∅ ) ) | |
| 21 | oa0 | ⊢ ( ∅ ∈ On → ( ∅ +o ∅ ) = ∅ ) | |
| 22 | 11 21 | ax-mp | ⊢ ( ∅ +o ∅ ) = ∅ |
| 23 | 20 22 | eqtrdi | ⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( 𝐴 +o 𝐵 ) = ∅ ) |
| 24 | 19 23 | impbid1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) |