This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is no set between an ordinal number and its successor. Proposition 7.25 of TakeutiZaring p. 41. Lemma 1.15 of Schloeder p. 2. (Contributed by NM, 9-Jun-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onnbtwn | ⊢ ( 𝐴 ∈ On → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 2 | ordnbtwn | ⊢ ( Ord 𝐴 → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ On → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) |