This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ordinal sum with a limit ordinal is a limit ordinal. Proposition 8.11 of TakeutiZaring p. 60. Lemma 3.4 of Schloeder p. 7. (Contributed by NM, 8-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oalimcl | |- ( ( A e. On /\ ( B e. C /\ Lim B ) ) -> Lim ( A +o B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limelon | |- ( ( B e. C /\ Lim B ) -> B e. On ) |
|
| 2 | oacl | |- ( ( A e. On /\ B e. On ) -> ( A +o B ) e. On ) |
|
| 3 | eloni | |- ( ( A +o B ) e. On -> Ord ( A +o B ) ) |
|
| 4 | 2 3 | syl | |- ( ( A e. On /\ B e. On ) -> Ord ( A +o B ) ) |
| 5 | 1 4 | sylan2 | |- ( ( A e. On /\ ( B e. C /\ Lim B ) ) -> Ord ( A +o B ) ) |
| 6 | 0ellim | |- ( Lim B -> (/) e. B ) |
|
| 7 | n0i | |- ( (/) e. B -> -. B = (/) ) |
|
| 8 | 6 7 | syl | |- ( Lim B -> -. B = (/) ) |
| 9 | 8 | ad2antll | |- ( ( A e. On /\ ( B e. C /\ Lim B ) ) -> -. B = (/) ) |
| 10 | oa00 | |- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) = (/) <-> ( A = (/) /\ B = (/) ) ) ) |
|
| 11 | simpr | |- ( ( A = (/) /\ B = (/) ) -> B = (/) ) |
|
| 12 | 10 11 | biimtrdi | |- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) = (/) -> B = (/) ) ) |
| 13 | 12 | con3d | |- ( ( A e. On /\ B e. On ) -> ( -. B = (/) -> -. ( A +o B ) = (/) ) ) |
| 14 | 1 13 | sylan2 | |- ( ( A e. On /\ ( B e. C /\ Lim B ) ) -> ( -. B = (/) -> -. ( A +o B ) = (/) ) ) |
| 15 | 9 14 | mpd | |- ( ( A e. On /\ ( B e. C /\ Lim B ) ) -> -. ( A +o B ) = (/) ) |
| 16 | vex | |- y e. _V |
|
| 17 | 16 | sucid | |- y e. suc y |
| 18 | oalim | |- ( ( A e. On /\ ( B e. C /\ Lim B ) ) -> ( A +o B ) = U_ x e. B ( A +o x ) ) |
|
| 19 | eqeq1 | |- ( ( A +o B ) = suc y -> ( ( A +o B ) = U_ x e. B ( A +o x ) <-> suc y = U_ x e. B ( A +o x ) ) ) |
|
| 20 | 18 19 | imbitrid | |- ( ( A +o B ) = suc y -> ( ( A e. On /\ ( B e. C /\ Lim B ) ) -> suc y = U_ x e. B ( A +o x ) ) ) |
| 21 | 20 | imp | |- ( ( ( A +o B ) = suc y /\ ( A e. On /\ ( B e. C /\ Lim B ) ) ) -> suc y = U_ x e. B ( A +o x ) ) |
| 22 | 17 21 | eleqtrid | |- ( ( ( A +o B ) = suc y /\ ( A e. On /\ ( B e. C /\ Lim B ) ) ) -> y e. U_ x e. B ( A +o x ) ) |
| 23 | eliun | |- ( y e. U_ x e. B ( A +o x ) <-> E. x e. B y e. ( A +o x ) ) |
|
| 24 | 22 23 | sylib | |- ( ( ( A +o B ) = suc y /\ ( A e. On /\ ( B e. C /\ Lim B ) ) ) -> E. x e. B y e. ( A +o x ) ) |
| 25 | onelon | |- ( ( B e. On /\ x e. B ) -> x e. On ) |
|
| 26 | 1 25 | sylan | |- ( ( ( B e. C /\ Lim B ) /\ x e. B ) -> x e. On ) |
| 27 | onnbtwn | |- ( x e. On -> -. ( x e. B /\ B e. suc x ) ) |
|
| 28 | imnan | |- ( ( x e. B -> -. B e. suc x ) <-> -. ( x e. B /\ B e. suc x ) ) |
|
| 29 | 27 28 | sylibr | |- ( x e. On -> ( x e. B -> -. B e. suc x ) ) |
| 30 | 29 | com12 | |- ( x e. B -> ( x e. On -> -. B e. suc x ) ) |
| 31 | 30 | adantl | |- ( ( ( B e. C /\ Lim B ) /\ x e. B ) -> ( x e. On -> -. B e. suc x ) ) |
| 32 | 26 31 | mpd | |- ( ( ( B e. C /\ Lim B ) /\ x e. B ) -> -. B e. suc x ) |
| 33 | 32 | ad2antrl | |- ( ( A e. On /\ ( ( ( B e. C /\ Lim B ) /\ x e. B ) /\ y e. ( A +o x ) ) ) -> -. B e. suc x ) |
| 34 | oacl | |- ( ( A e. On /\ x e. On ) -> ( A +o x ) e. On ) |
|
| 35 | eloni | |- ( ( A +o x ) e. On -> Ord ( A +o x ) ) |
|
| 36 | ordsucelsuc | |- ( Ord ( A +o x ) -> ( y e. ( A +o x ) <-> suc y e. suc ( A +o x ) ) ) |
|
| 37 | 34 35 36 | 3syl | |- ( ( A e. On /\ x e. On ) -> ( y e. ( A +o x ) <-> suc y e. suc ( A +o x ) ) ) |
| 38 | oasuc | |- ( ( A e. On /\ x e. On ) -> ( A +o suc x ) = suc ( A +o x ) ) |
|
| 39 | 38 | eleq2d | |- ( ( A e. On /\ x e. On ) -> ( suc y e. ( A +o suc x ) <-> suc y e. suc ( A +o x ) ) ) |
| 40 | 37 39 | bitr4d | |- ( ( A e. On /\ x e. On ) -> ( y e. ( A +o x ) <-> suc y e. ( A +o suc x ) ) ) |
| 41 | 26 40 | sylan2 | |- ( ( A e. On /\ ( ( B e. C /\ Lim B ) /\ x e. B ) ) -> ( y e. ( A +o x ) <-> suc y e. ( A +o suc x ) ) ) |
| 42 | eleq1 | |- ( ( A +o B ) = suc y -> ( ( A +o B ) e. ( A +o suc x ) <-> suc y e. ( A +o suc x ) ) ) |
|
| 43 | 42 | bicomd | |- ( ( A +o B ) = suc y -> ( suc y e. ( A +o suc x ) <-> ( A +o B ) e. ( A +o suc x ) ) ) |
| 44 | 41 43 | sylan9bbr | |- ( ( ( A +o B ) = suc y /\ ( A e. On /\ ( ( B e. C /\ Lim B ) /\ x e. B ) ) ) -> ( y e. ( A +o x ) <-> ( A +o B ) e. ( A +o suc x ) ) ) |
| 45 | 1 | adantr | |- ( ( ( B e. C /\ Lim B ) /\ x e. B ) -> B e. On ) |
| 46 | onsucb | |- ( x e. On <-> suc x e. On ) |
|
| 47 | 26 46 | sylib | |- ( ( ( B e. C /\ Lim B ) /\ x e. B ) -> suc x e. On ) |
| 48 | 45 47 | jca | |- ( ( ( B e. C /\ Lim B ) /\ x e. B ) -> ( B e. On /\ suc x e. On ) ) |
| 49 | oaord | |- ( ( B e. On /\ suc x e. On /\ A e. On ) -> ( B e. suc x <-> ( A +o B ) e. ( A +o suc x ) ) ) |
|
| 50 | 49 | 3expa | |- ( ( ( B e. On /\ suc x e. On ) /\ A e. On ) -> ( B e. suc x <-> ( A +o B ) e. ( A +o suc x ) ) ) |
| 51 | 48 50 | sylan | |- ( ( ( ( B e. C /\ Lim B ) /\ x e. B ) /\ A e. On ) -> ( B e. suc x <-> ( A +o B ) e. ( A +o suc x ) ) ) |
| 52 | 51 | ancoms | |- ( ( A e. On /\ ( ( B e. C /\ Lim B ) /\ x e. B ) ) -> ( B e. suc x <-> ( A +o B ) e. ( A +o suc x ) ) ) |
| 53 | 52 | adantl | |- ( ( ( A +o B ) = suc y /\ ( A e. On /\ ( ( B e. C /\ Lim B ) /\ x e. B ) ) ) -> ( B e. suc x <-> ( A +o B ) e. ( A +o suc x ) ) ) |
| 54 | 44 53 | bitr4d | |- ( ( ( A +o B ) = suc y /\ ( A e. On /\ ( ( B e. C /\ Lim B ) /\ x e. B ) ) ) -> ( y e. ( A +o x ) <-> B e. suc x ) ) |
| 55 | 54 | biimpd | |- ( ( ( A +o B ) = suc y /\ ( A e. On /\ ( ( B e. C /\ Lim B ) /\ x e. B ) ) ) -> ( y e. ( A +o x ) -> B e. suc x ) ) |
| 56 | 55 | exp32 | |- ( ( A +o B ) = suc y -> ( A e. On -> ( ( ( B e. C /\ Lim B ) /\ x e. B ) -> ( y e. ( A +o x ) -> B e. suc x ) ) ) ) |
| 57 | 56 | com4l | |- ( A e. On -> ( ( ( B e. C /\ Lim B ) /\ x e. B ) -> ( y e. ( A +o x ) -> ( ( A +o B ) = suc y -> B e. suc x ) ) ) ) |
| 58 | 57 | imp32 | |- ( ( A e. On /\ ( ( ( B e. C /\ Lim B ) /\ x e. B ) /\ y e. ( A +o x ) ) ) -> ( ( A +o B ) = suc y -> B e. suc x ) ) |
| 59 | 33 58 | mtod | |- ( ( A e. On /\ ( ( ( B e. C /\ Lim B ) /\ x e. B ) /\ y e. ( A +o x ) ) ) -> -. ( A +o B ) = suc y ) |
| 60 | 59 | exp44 | |- ( A e. On -> ( ( B e. C /\ Lim B ) -> ( x e. B -> ( y e. ( A +o x ) -> -. ( A +o B ) = suc y ) ) ) ) |
| 61 | 60 | imp | |- ( ( A e. On /\ ( B e. C /\ Lim B ) ) -> ( x e. B -> ( y e. ( A +o x ) -> -. ( A +o B ) = suc y ) ) ) |
| 62 | 61 | rexlimdv | |- ( ( A e. On /\ ( B e. C /\ Lim B ) ) -> ( E. x e. B y e. ( A +o x ) -> -. ( A +o B ) = suc y ) ) |
| 63 | 62 | adantl | |- ( ( ( A +o B ) = suc y /\ ( A e. On /\ ( B e. C /\ Lim B ) ) ) -> ( E. x e. B y e. ( A +o x ) -> -. ( A +o B ) = suc y ) ) |
| 64 | 24 63 | mpd | |- ( ( ( A +o B ) = suc y /\ ( A e. On /\ ( B e. C /\ Lim B ) ) ) -> -. ( A +o B ) = suc y ) |
| 65 | 64 | expcom | |- ( ( A e. On /\ ( B e. C /\ Lim B ) ) -> ( ( A +o B ) = suc y -> -. ( A +o B ) = suc y ) ) |
| 66 | 65 | pm2.01d | |- ( ( A e. On /\ ( B e. C /\ Lim B ) ) -> -. ( A +o B ) = suc y ) |
| 67 | 66 | adantr | |- ( ( ( A e. On /\ ( B e. C /\ Lim B ) ) /\ y e. On ) -> -. ( A +o B ) = suc y ) |
| 68 | 67 | nrexdv | |- ( ( A e. On /\ ( B e. C /\ Lim B ) ) -> -. E. y e. On ( A +o B ) = suc y ) |
| 69 | ioran | |- ( -. ( ( A +o B ) = (/) \/ E. y e. On ( A +o B ) = suc y ) <-> ( -. ( A +o B ) = (/) /\ -. E. y e. On ( A +o B ) = suc y ) ) |
|
| 70 | 15 68 69 | sylanbrc | |- ( ( A e. On /\ ( B e. C /\ Lim B ) ) -> -. ( ( A +o B ) = (/) \/ E. y e. On ( A +o B ) = suc y ) ) |
| 71 | dflim3 | |- ( Lim ( A +o B ) <-> ( Ord ( A +o B ) /\ -. ( ( A +o B ) = (/) \/ E. y e. On ( A +o B ) = suc y ) ) ) |
|
| 72 | 5 70 71 | sylanbrc | |- ( ( A e. On /\ ( B e. C /\ Lim B ) ) -> Lim ( A +o B ) ) |