This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed abelian group is a topological group (with the topology induced by the metric induced by the norm). (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ngptgp | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → 𝐺 ∈ TopGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpgrp | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → 𝐺 ∈ Grp ) |
| 3 | ngpms | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → 𝐺 ∈ MetSp ) |
| 5 | mstps | ⊢ ( 𝐺 ∈ MetSp → 𝐺 ∈ TopSp ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → 𝐺 ∈ TopSp ) |
| 7 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 8 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 9 | 7 8 | grpsubf | ⊢ ( 𝐺 ∈ Grp → ( -g ‘ 𝐺 ) : ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ⟶ ( Base ‘ 𝐺 ) ) |
| 10 | 2 9 | syl | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → ( -g ‘ 𝐺 ) : ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ⟶ ( Base ‘ 𝐺 ) ) |
| 11 | rphalfcl | ⊢ ( 𝑧 ∈ ℝ+ → ( 𝑧 / 2 ) ∈ ℝ+ ) | |
| 12 | simplll | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ) | |
| 13 | 12 4 | syl | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → 𝐺 ∈ MetSp ) |
| 14 | simpllr | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) | |
| 15 | 14 | simpld | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 16 | simprl | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑢 ∈ ( Base ‘ 𝐺 ) ) | |
| 17 | eqid | ⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) | |
| 18 | 7 17 | mscl | ⊢ ( ( 𝐺 ∈ MetSp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) ∈ ℝ ) |
| 19 | 13 15 16 18 | syl3anc | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) ∈ ℝ ) |
| 20 | 14 | simprd | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 21 | simprr | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑣 ∈ ( Base ‘ 𝐺 ) ) | |
| 22 | 7 17 | mscl | ⊢ ( ( 𝐺 ∈ MetSp ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ∈ ℝ ) |
| 23 | 13 20 21 22 | syl3anc | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ∈ ℝ ) |
| 24 | rpre | ⊢ ( 𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ ) | |
| 25 | 24 | ad2antlr | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑧 ∈ ℝ ) |
| 26 | lt2halves | ⊢ ( ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) ∈ ℝ ∧ ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) < ( 𝑧 / 2 ) ) → ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) ) | |
| 27 | 19 23 25 26 | syl3anc | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) < ( 𝑧 / 2 ) ) → ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) ) |
| 28 | 12 2 | syl | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → 𝐺 ∈ Grp ) |
| 29 | 7 8 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 30 | 28 15 20 29 | syl3anc | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 31 | 7 8 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ∈ ( Base ‘ 𝐺 ) ) |
| 32 | 28 16 21 31 | syl3anc | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ∈ ( Base ‘ 𝐺 ) ) |
| 33 | 7 8 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 34 | 28 16 20 33 | syl3anc | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑢 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 35 | 7 17 | mstri | ⊢ ( ( 𝐺 ∈ MetSp ∧ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑢 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) ≤ ( ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑦 ) ) + ( ( 𝑢 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) ) ) |
| 36 | 13 30 32 34 35 | syl13anc | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) ≤ ( ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑦 ) ) + ( ( 𝑢 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) ) ) |
| 37 | 12 | simpld | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → 𝐺 ∈ NrmGrp ) |
| 38 | 7 8 17 | ngpsubcan | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) ) |
| 39 | 37 15 16 20 38 | syl13anc | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) ) |
| 40 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 41 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 42 | 7 40 41 8 | grpsubval | ⊢ ( ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ( -g ‘ 𝐺 ) 𝑦 ) = ( 𝑢 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 43 | 16 20 42 | syl2anc | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑢 ( -g ‘ 𝐺 ) 𝑦 ) = ( 𝑢 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 44 | 7 40 41 8 | grpsubval | ⊢ ( ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) = ( 𝑢 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑣 ) ) ) |
| 45 | 44 | adantl | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) = ( 𝑢 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑣 ) ) ) |
| 46 | 43 45 | oveq12d | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑢 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) = ( ( 𝑢 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( dist ‘ 𝐺 ) ( 𝑢 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑣 ) ) ) ) |
| 47 | 7 41 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 48 | 28 20 47 | syl2anc | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 49 | 7 41 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ( Base ‘ 𝐺 ) ) |
| 50 | 28 21 49 | syl2anc | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ( Base ‘ 𝐺 ) ) |
| 51 | 7 40 17 | ngplcan | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( dist ‘ 𝐺 ) ( 𝑢 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑣 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( dist ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑣 ) ) ) |
| 52 | 12 48 50 16 51 | syl13anc | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( dist ‘ 𝐺 ) ( 𝑢 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑣 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( dist ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑣 ) ) ) |
| 53 | 7 41 17 | ngpinvds | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( dist ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑣 ) ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) |
| 54 | 12 20 21 53 | syl12anc | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( dist ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑣 ) ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) |
| 55 | 46 52 54 | 3eqtrd | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑢 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) |
| 56 | 39 55 | oveq12d | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑦 ) ) + ( ( 𝑢 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) ) = ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) ) |
| 57 | 36 56 | breqtrd | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) ≤ ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) ) |
| 58 | 7 17 | mscl | ⊢ ( ( 𝐺 ∈ MetSp ∧ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) ∈ ℝ ) |
| 59 | 13 30 32 58 | syl3anc | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) ∈ ℝ ) |
| 60 | 19 23 | readdcld | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) ∈ ℝ ) |
| 61 | lelttr | ⊢ ( ( ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) ∈ ℝ ∧ ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) ≤ ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) ∧ ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) ) | |
| 62 | 59 60 25 61 | syl3anc | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) ≤ ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) ∧ ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) ) |
| 63 | 57 62 | mpand | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) < 𝑧 → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) ) |
| 64 | 27 63 | syld | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) < ( 𝑧 / 2 ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) ) |
| 65 | 15 16 | ovresd | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) = ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) ) |
| 66 | 65 | breq1d | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < ( 𝑧 / 2 ) ↔ ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) < ( 𝑧 / 2 ) ) ) |
| 67 | 20 21 | ovresd | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) |
| 68 | 67 | breq1d | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < ( 𝑧 / 2 ) ↔ ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) < ( 𝑧 / 2 ) ) ) |
| 69 | 66 68 | anbi12d | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < ( 𝑧 / 2 ) ) ↔ ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) < ( 𝑧 / 2 ) ) ) ) |
| 70 | 30 32 | ovresd | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) = ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) ) |
| 71 | 70 | breq1d | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ↔ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) ) |
| 72 | 64 69 71 | 3imtr4d | ⊢ ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < ( 𝑧 / 2 ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) ) |
| 73 | 72 | ralrimivva | ⊢ ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) → ∀ 𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐺 ) ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < ( 𝑧 / 2 ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) ) |
| 74 | breq2 | ⊢ ( 𝑟 = ( 𝑧 / 2 ) → ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < 𝑟 ↔ ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < ( 𝑧 / 2 ) ) ) | |
| 75 | breq2 | ⊢ ( 𝑟 = ( 𝑧 / 2 ) → ( ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < 𝑟 ↔ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < ( 𝑧 / 2 ) ) ) | |
| 76 | 74 75 | anbi12d | ⊢ ( 𝑟 = ( 𝑧 / 2 ) → ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < 𝑟 ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < 𝑟 ) ↔ ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < ( 𝑧 / 2 ) ) ) ) |
| 77 | 76 | imbi1d | ⊢ ( 𝑟 = ( 𝑧 / 2 ) → ( ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < 𝑟 ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < 𝑟 ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) ↔ ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < ( 𝑧 / 2 ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) ) ) |
| 78 | 77 | 2ralbidv | ⊢ ( 𝑟 = ( 𝑧 / 2 ) → ( ∀ 𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐺 ) ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < 𝑟 ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < 𝑟 ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) ↔ ∀ 𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐺 ) ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < ( 𝑧 / 2 ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) ) ) |
| 79 | 78 | rspcev | ⊢ ( ( ( 𝑧 / 2 ) ∈ ℝ+ ∧ ∀ 𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐺 ) ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < ( 𝑧 / 2 ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) ) → ∃ 𝑟 ∈ ℝ+ ∀ 𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐺 ) ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < 𝑟 ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < 𝑟 ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) ) |
| 80 | 11 73 79 | syl2an2 | ⊢ ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) → ∃ 𝑟 ∈ ℝ+ ∀ 𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐺 ) ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < 𝑟 ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < 𝑟 ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) ) |
| 81 | 80 | ralrimiva | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑟 ∈ ℝ+ ∀ 𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐺 ) ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < 𝑟 ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < 𝑟 ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) ) |
| 82 | 81 | ralrimivva | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ℝ+ ∃ 𝑟 ∈ ℝ+ ∀ 𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐺 ) ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < 𝑟 ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < 𝑟 ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) ) |
| 83 | msxms | ⊢ ( 𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp ) | |
| 84 | eqid | ⊢ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) = ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) | |
| 85 | 7 84 | xmsxmet | ⊢ ( 𝐺 ∈ ∞MetSp → ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐺 ) ) ) |
| 86 | 4 83 85 | 3syl | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐺 ) ) ) |
| 87 | eqid | ⊢ ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) | |
| 88 | 87 87 87 | txmetcn | ⊢ ( ( ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐺 ) ) ∧ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐺 ) ) ∧ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐺 ) ) ) → ( ( -g ‘ 𝐺 ) ∈ ( ( ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ) ↔ ( ( -g ‘ 𝐺 ) : ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ⟶ ( Base ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ℝ+ ∃ 𝑟 ∈ ℝ+ ∀ 𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐺 ) ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < 𝑟 ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < 𝑟 ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) ) ) ) |
| 89 | 86 86 86 88 | syl3anc | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → ( ( -g ‘ 𝐺 ) ∈ ( ( ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ) ↔ ( ( -g ‘ 𝐺 ) : ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ⟶ ( Base ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ℝ+ ∃ 𝑟 ∈ ℝ+ ∀ 𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐺 ) ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < 𝑟 ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < 𝑟 ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) ) ) ) |
| 90 | 10 82 89 | mpbir2and | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → ( -g ‘ 𝐺 ) ∈ ( ( ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ) ) |
| 91 | eqid | ⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) | |
| 92 | 91 7 84 | mstopn | ⊢ ( 𝐺 ∈ MetSp → ( TopOpen ‘ 𝐺 ) = ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ) |
| 93 | 4 92 | syl | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → ( TopOpen ‘ 𝐺 ) = ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ) |
| 94 | 93 93 | oveq12d | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) = ( ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ) ) |
| 95 | 94 93 | oveq12d | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) = ( ( ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ) ) |
| 96 | 90 95 | eleqtrrd | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → ( -g ‘ 𝐺 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 97 | 91 8 | istgp2 | ⊢ ( 𝐺 ∈ TopGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ( -g ‘ 𝐺 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) ) |
| 98 | 2 6 96 97 | syl3anbrc | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → 𝐺 ∈ TopGrp ) |