This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property deduction for a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ngppropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| ngppropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| ngppropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| ngppropd.4 | ⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) ) | ||
| ngppropd.5 | ⊢ ( 𝜑 → ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐿 ) ) | ||
| Assertion | ngppropd | ⊢ ( 𝜑 → ( 𝐾 ∈ NrmGrp ↔ 𝐿 ∈ NrmGrp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngppropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | ngppropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | ngppropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 4 | ngppropd.4 | ⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) ) | |
| 5 | ngppropd.5 | ⊢ ( 𝜑 → ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐿 ) ) | |
| 6 | 1 2 4 5 | mspropd | ⊢ ( 𝜑 → ( 𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → ( 𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp ) ) |
| 8 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 9 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → 𝐵 = ( Base ‘ 𝐿 ) ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → 𝐾 ∈ Grp ) | |
| 11 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ Grp ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 12 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) ) |
| 13 | 8 9 10 11 12 | nmpropd2 | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → ( norm ‘ 𝐾 ) = ( norm ‘ 𝐿 ) ) |
| 14 | 8 9 10 11 | grpsubpropd2 | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → ( -g ‘ 𝐾 ) = ( -g ‘ 𝐿 ) ) |
| 15 | 13 14 | coeq12d | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → ( ( norm ‘ 𝐾 ) ∘ ( -g ‘ 𝐾 ) ) = ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) ) |
| 16 | 1 | sqxpeqd | ⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
| 17 | 16 | reseq2d | ⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
| 18 | 2 | sqxpeqd | ⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) |
| 19 | 18 | reseq2d | ⊢ ( 𝜑 → ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) |
| 20 | 4 17 19 | 3eqtr3d | ⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) |
| 22 | 15 21 | eqeq12d | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → ( ( ( norm ‘ 𝐾 ) ∘ ( -g ‘ 𝐾 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↔ ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) |
| 23 | 7 22 | anbi12d | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → ( ( 𝐾 ∈ MetSp ∧ ( ( norm ‘ 𝐾 ) ∘ ( -g ‘ 𝐾 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ↔ ( 𝐿 ∈ MetSp ∧ ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) ) |
| 24 | 23 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝐾 ∈ Grp ∧ ( 𝐾 ∈ MetSp ∧ ( ( norm ‘ 𝐾 ) ∘ ( -g ‘ 𝐾 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) ↔ ( 𝐾 ∈ Grp ∧ ( 𝐿 ∈ MetSp ∧ ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) ) ) |
| 25 | 1 2 3 | grppropd | ⊢ ( 𝜑 → ( 𝐾 ∈ Grp ↔ 𝐿 ∈ Grp ) ) |
| 26 | 25 | anbi1d | ⊢ ( 𝜑 → ( ( 𝐾 ∈ Grp ∧ ( 𝐿 ∈ MetSp ∧ ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) ↔ ( 𝐿 ∈ Grp ∧ ( 𝐿 ∈ MetSp ∧ ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) ) ) |
| 27 | 24 26 | bitrd | ⊢ ( 𝜑 → ( ( 𝐾 ∈ Grp ∧ ( 𝐾 ∈ MetSp ∧ ( ( norm ‘ 𝐾 ) ∘ ( -g ‘ 𝐾 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) ↔ ( 𝐿 ∈ Grp ∧ ( 𝐿 ∈ MetSp ∧ ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) ) ) |
| 28 | 3anass | ⊢ ( ( 𝐾 ∈ Grp ∧ 𝐾 ∈ MetSp ∧ ( ( norm ‘ 𝐾 ) ∘ ( -g ‘ 𝐾 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ↔ ( 𝐾 ∈ Grp ∧ ( 𝐾 ∈ MetSp ∧ ( ( norm ‘ 𝐾 ) ∘ ( -g ‘ 𝐾 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) ) | |
| 29 | 3anass | ⊢ ( ( 𝐿 ∈ Grp ∧ 𝐿 ∈ MetSp ∧ ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ↔ ( 𝐿 ∈ Grp ∧ ( 𝐿 ∈ MetSp ∧ ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) ) | |
| 30 | 27 28 29 | 3bitr4g | ⊢ ( 𝜑 → ( ( 𝐾 ∈ Grp ∧ 𝐾 ∈ MetSp ∧ ( ( norm ‘ 𝐾 ) ∘ ( -g ‘ 𝐾 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ↔ ( 𝐿 ∈ Grp ∧ 𝐿 ∈ MetSp ∧ ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) ) |
| 31 | eqid | ⊢ ( norm ‘ 𝐾 ) = ( norm ‘ 𝐾 ) | |
| 32 | eqid | ⊢ ( -g ‘ 𝐾 ) = ( -g ‘ 𝐾 ) | |
| 33 | eqid | ⊢ ( dist ‘ 𝐾 ) = ( dist ‘ 𝐾 ) | |
| 34 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 35 | eqid | ⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) | |
| 36 | 31 32 33 34 35 | isngp2 | ⊢ ( 𝐾 ∈ NrmGrp ↔ ( 𝐾 ∈ Grp ∧ 𝐾 ∈ MetSp ∧ ( ( norm ‘ 𝐾 ) ∘ ( -g ‘ 𝐾 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) |
| 37 | eqid | ⊢ ( norm ‘ 𝐿 ) = ( norm ‘ 𝐿 ) | |
| 38 | eqid | ⊢ ( -g ‘ 𝐿 ) = ( -g ‘ 𝐿 ) | |
| 39 | eqid | ⊢ ( dist ‘ 𝐿 ) = ( dist ‘ 𝐿 ) | |
| 40 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 41 | eqid | ⊢ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) | |
| 42 | 37 38 39 40 41 | isngp2 | ⊢ ( 𝐿 ∈ NrmGrp ↔ ( 𝐿 ∈ Grp ∧ 𝐿 ∈ MetSp ∧ ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) |
| 43 | 30 36 42 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐾 ∈ NrmGrp ↔ 𝐿 ∈ NrmGrp ) ) |