This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem mstps

Description: A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion mstps ( 𝑀 ∈ MetSp → 𝑀 ∈ TopSp )

Proof

Step Hyp Ref Expression
1 msxms ( 𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp )
2 xmstps ( 𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp )
3 1 2 syl ( 𝑀 ∈ MetSp → 𝑀 ∈ TopSp )