This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two elements are the same distance apart as their inverses. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ngpinvds.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| ngpinvds.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| ngpinvds.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | ||
| Assertion | ngpinvds | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐼 ‘ 𝐴 ) 𝐷 ( 𝐼 ‘ 𝐵 ) ) = ( 𝐴 𝐷 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpinvds.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | ngpinvds.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 3 | ngpinvds.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 5 | simplr | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐺 ∈ Abel ) | |
| 6 | simprr | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 7 | simprl | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 8 | 1 4 2 5 6 7 | ablsub2inv | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐼 ‘ 𝐵 ) ( -g ‘ 𝐺 ) ( 𝐼 ‘ 𝐴 ) ) = ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) |
| 9 | 8 | fveq2d | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( norm ‘ 𝐺 ) ‘ ( ( 𝐼 ‘ 𝐵 ) ( -g ‘ 𝐺 ) ( 𝐼 ‘ 𝐴 ) ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) ) |
| 10 | simpll | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐺 ∈ NrmGrp ) | |
| 11 | ngpgrp | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) | |
| 12 | 10 11 | syl | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 13 | 1 2 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 ) |
| 14 | 12 7 13 | syl2anc | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 ) |
| 15 | 1 2 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ) → ( 𝐼 ‘ 𝐵 ) ∈ 𝑋 ) |
| 16 | 12 6 15 | syl2anc | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐼 ‘ 𝐵 ) ∈ 𝑋 ) |
| 17 | eqid | ⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) | |
| 18 | 17 1 4 3 | ngpdsr | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 ∧ ( 𝐼 ‘ 𝐵 ) ∈ 𝑋 ) → ( ( 𝐼 ‘ 𝐴 ) 𝐷 ( 𝐼 ‘ 𝐵 ) ) = ( ( norm ‘ 𝐺 ) ‘ ( ( 𝐼 ‘ 𝐵 ) ( -g ‘ 𝐺 ) ( 𝐼 ‘ 𝐴 ) ) ) ) |
| 19 | 10 14 16 18 | syl3anc | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐼 ‘ 𝐴 ) 𝐷 ( 𝐼 ‘ 𝐵 ) ) = ( ( norm ‘ 𝐺 ) ‘ ( ( 𝐼 ‘ 𝐵 ) ( -g ‘ 𝐺 ) ( 𝐼 ‘ 𝐴 ) ) ) ) |
| 20 | 17 1 4 3 | ngpds | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) ) |
| 21 | 10 7 6 20 | syl3anc | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) ) |
| 22 | 9 19 21 | 3eqtr4d | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐼 ‘ 𝐴 ) 𝐷 ( 𝐼 ‘ 𝐵 ) ) = ( 𝐴 𝐷 𝐵 ) ) |