This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancel left addition inside a distance calculation. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ngprcan.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| ngprcan.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| ngprcan.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | ||
| Assertion | ngplcan | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐶 + 𝐴 ) 𝐷 ( 𝐶 + 𝐵 ) ) = ( 𝐴 𝐷 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngprcan.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | ngprcan.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | ngprcan.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | |
| 4 | simplr | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐺 ∈ Abel ) | |
| 5 | simpr3 | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐶 ∈ 𝑋 ) | |
| 6 | simpr1 | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 7 | 1 2 | ablcom | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐶 + 𝐴 ) = ( 𝐴 + 𝐶 ) ) |
| 8 | 4 5 6 7 | syl3anc | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐶 + 𝐴 ) = ( 𝐴 + 𝐶 ) ) |
| 9 | simpr2 | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 10 | 1 2 | ablcom | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐶 + 𝐵 ) = ( 𝐵 + 𝐶 ) ) |
| 11 | 4 5 9 10 | syl3anc | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐶 + 𝐵 ) = ( 𝐵 + 𝐶 ) ) |
| 12 | 8 11 | oveq12d | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐶 + 𝐴 ) 𝐷 ( 𝐶 + 𝐵 ) ) = ( ( 𝐴 + 𝐶 ) 𝐷 ( 𝐵 + 𝐶 ) ) ) |
| 13 | 1 2 3 | ngprcan | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝐶 ) 𝐷 ( 𝐵 + 𝐶 ) ) = ( 𝐴 𝐷 𝐵 ) ) |
| 14 | 13 | adantlr | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝐶 ) 𝐷 ( 𝐵 + 𝐶 ) ) = ( 𝐴 𝐷 𝐵 ) ) |
| 15 | 12 14 | eqtrd | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐶 + 𝐴 ) 𝐷 ( 𝐶 + 𝐵 ) ) = ( 𝐴 𝐷 𝐵 ) ) |