This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of Gleason p. 223. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mscl.x | ⊢ 𝑋 = ( Base ‘ 𝑀 ) | |
| mscl.d | ⊢ 𝐷 = ( dist ‘ 𝑀 ) | ||
| Assertion | mstri | ⊢ ( ( 𝑀 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐴 𝐷 𝐶 ) + ( 𝐶 𝐷 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mscl.x | ⊢ 𝑋 = ( Base ‘ 𝑀 ) | |
| 2 | mscl.d | ⊢ 𝐷 = ( dist ‘ 𝑀 ) | |
| 3 | 1 2 | msmet2 | ⊢ ( 𝑀 ∈ MetSp → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( Met ‘ 𝑋 ) ) |
| 4 | mettri | ⊢ ( ( ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) ≤ ( ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) + ( 𝐶 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) ) ) | |
| 5 | 3 4 | sylan | ⊢ ( ( 𝑀 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) ≤ ( ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) + ( 𝐶 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) ) ) |
| 6 | simpr1 | ⊢ ( ( 𝑀 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 7 | simpr2 | ⊢ ( ( 𝑀 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 8 | 6 7 | ovresd | ⊢ ( ( 𝑀 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = ( 𝐴 𝐷 𝐵 ) ) |
| 9 | simpr3 | ⊢ ( ( 𝑀 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐶 ∈ 𝑋 ) | |
| 10 | 6 9 | ovresd | ⊢ ( ( 𝑀 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) = ( 𝐴 𝐷 𝐶 ) ) |
| 11 | 9 7 | ovresd | ⊢ ( ( 𝑀 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐶 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = ( 𝐶 𝐷 𝐵 ) ) |
| 12 | 10 11 | oveq12d | ⊢ ( ( 𝑀 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) + ( 𝐶 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) ) = ( ( 𝐴 𝐷 𝐶 ) + ( 𝐶 𝐷 𝐵 ) ) ) |
| 13 | 5 8 12 | 3brtr3d | ⊢ ( ( 𝑀 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐴 𝐷 𝐶 ) + ( 𝐶 𝐷 𝐵 ) ) ) |