This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancel right subtraction inside a distance calculation. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ngpsubcan.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| ngpsubcan.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| ngpsubcan.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | ||
| Assertion | ngpsubcan | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 − 𝐶 ) 𝐷 ( 𝐵 − 𝐶 ) ) = ( 𝐴 𝐷 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpsubcan.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | ngpsubcan.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | ngpsubcan.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | |
| 4 | simpr1 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 5 | simpr3 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐶 ∈ 𝑋 ) | |
| 6 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 8 | 1 6 7 2 | grpsubval | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 − 𝐶 ) = ( 𝐴 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
| 9 | 4 5 8 | syl2anc | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 − 𝐶 ) = ( 𝐴 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
| 10 | simpr2 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 11 | 1 6 7 2 | grpsubval | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 − 𝐶 ) = ( 𝐵 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
| 12 | 10 5 11 | syl2anc | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 − 𝐶 ) = ( 𝐵 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
| 13 | 9 12 | oveq12d | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 − 𝐶 ) 𝐷 ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) 𝐷 ( 𝐵 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) ) ) |
| 14 | simpl | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐺 ∈ NrmGrp ) | |
| 15 | ngpgrp | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) | |
| 16 | 1 7 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐶 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) |
| 17 | 15 5 16 | syl2an2r | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) |
| 18 | 1 6 3 | ngprcan | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) ) → ( ( 𝐴 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) 𝐷 ( 𝐵 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) ) = ( 𝐴 𝐷 𝐵 ) ) |
| 19 | 14 4 10 17 18 | syl13anc | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) 𝐷 ( 𝐵 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) ) = ( 𝐴 𝐷 𝐵 ) ) |
| 20 | 13 19 | eqtrd | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 − 𝐶 ) 𝐷 ( 𝐵 − 𝐶 ) ) = ( 𝐴 𝐷 𝐵 ) ) |