This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum is less than the whole if each term is less than half. (Contributed by NM, 13-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lt2halves | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < ( 𝐶 / 2 ) ∧ 𝐵 < ( 𝐶 / 2 ) ) → ( 𝐴 + 𝐵 ) < 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) | |
| 2 | rehalfcl | ⊢ ( 𝐶 ∈ ℝ → ( 𝐶 / 2 ) ∈ ℝ ) | |
| 3 | 2 2 | jca | ⊢ ( 𝐶 ∈ ℝ → ( ( 𝐶 / 2 ) ∈ ℝ ∧ ( 𝐶 / 2 ) ∈ ℝ ) ) |
| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐶 / 2 ) ∈ ℝ ∧ ( 𝐶 / 2 ) ∈ ℝ ) ) |
| 5 | lt2add | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 / 2 ) ∈ ℝ ∧ ( 𝐶 / 2 ) ∈ ℝ ) ) → ( ( 𝐴 < ( 𝐶 / 2 ) ∧ 𝐵 < ( 𝐶 / 2 ) ) → ( 𝐴 + 𝐵 ) < ( ( 𝐶 / 2 ) + ( 𝐶 / 2 ) ) ) ) | |
| 6 | 1 4 5 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < ( 𝐶 / 2 ) ∧ 𝐵 < ( 𝐶 / 2 ) ) → ( 𝐴 + 𝐵 ) < ( ( 𝐶 / 2 ) + ( 𝐶 / 2 ) ) ) ) |
| 7 | recn | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) | |
| 8 | 2halves | ⊢ ( 𝐶 ∈ ℂ → ( ( 𝐶 / 2 ) + ( 𝐶 / 2 ) ) = 𝐶 ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐶 ∈ ℝ → ( ( 𝐶 / 2 ) + ( 𝐶 / 2 ) ) = 𝐶 ) |
| 10 | 9 | breq2d | ⊢ ( 𝐶 ∈ ℝ → ( ( 𝐴 + 𝐵 ) < ( ( 𝐶 / 2 ) + ( 𝐶 / 2 ) ) ↔ ( 𝐴 + 𝐵 ) < 𝐶 ) ) |
| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) < ( ( 𝐶 / 2 ) + ( 𝐶 / 2 ) ) ↔ ( 𝐴 + 𝐵 ) < 𝐶 ) ) |
| 12 | 6 11 | sylibd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < ( 𝐶 / 2 ) ∧ 𝐵 < ( 𝐶 / 2 ) ) → ( 𝐴 + 𝐵 ) < 𝐶 ) ) |