This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product of two divisor sums. (This is also the main part of the proof that " sum_ k || N F ( k ) is a multiplicative function if F is".) (Contributed by Mario Carneiro, 2-Jul-2015) Avoid ax-mulf . (Revised by GG, 18-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpodvdsmulf1o.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| mpodvdsmulf1o.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | ||
| mpodvdsmulf1o.3 | ⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 1 ) | ||
| mpodvdsmulf1o.x | ⊢ 𝑋 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } | ||
| mpodvdsmulf1o.y | ⊢ 𝑌 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } | ||
| mpodvdsmulf1o.z | ⊢ 𝑍 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑀 · 𝑁 ) } | ||
| fsumdvdsmul.4 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | ||
| fsumdvdsmul.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → 𝐵 ∈ ℂ ) | ||
| fsumdvdsmul.6 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → ( 𝐴 · 𝐵 ) = 𝐷 ) | ||
| fsumdvdsmul.7 | ⊢ ( 𝑖 = ( 𝑗 · 𝑘 ) → 𝐶 = 𝐷 ) | ||
| Assertion | fsumdvdsmul | ⊢ ( 𝜑 → ( Σ 𝑗 ∈ 𝑋 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑖 ∈ 𝑍 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpodvdsmulf1o.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| 2 | mpodvdsmulf1o.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 3 | mpodvdsmulf1o.3 | ⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 1 ) | |
| 4 | mpodvdsmulf1o.x | ⊢ 𝑋 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } | |
| 5 | mpodvdsmulf1o.y | ⊢ 𝑌 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } | |
| 6 | mpodvdsmulf1o.z | ⊢ 𝑍 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑀 · 𝑁 ) } | |
| 7 | fsumdvdsmul.4 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | |
| 8 | fsumdvdsmul.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → 𝐵 ∈ ℂ ) | |
| 9 | fsumdvdsmul.6 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → ( 𝐴 · 𝐵 ) = 𝐷 ) | |
| 10 | fsumdvdsmul.7 | ⊢ ( 𝑖 = ( 𝑗 · 𝑘 ) → 𝐶 = 𝐷 ) | |
| 11 | fzfid | ⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) | |
| 12 | dvdsssfz1 | ⊢ ( 𝑀 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ⊆ ( 1 ... 𝑀 ) ) | |
| 13 | 1 12 | syl | ⊢ ( 𝜑 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ⊆ ( 1 ... 𝑀 ) ) |
| 14 | 4 13 | eqsstrid | ⊢ ( 𝜑 → 𝑋 ⊆ ( 1 ... 𝑀 ) ) |
| 15 | 11 14 | ssfid | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 16 | fzfid | ⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) | |
| 17 | dvdsssfz1 | ⊢ ( 𝑁 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) | |
| 18 | 2 17 | syl | ⊢ ( 𝜑 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) |
| 19 | 5 18 | eqsstrid | ⊢ ( 𝜑 → 𝑌 ⊆ ( 1 ... 𝑁 ) ) |
| 20 | 16 19 | ssfid | ⊢ ( 𝜑 → 𝑌 ∈ Fin ) |
| 21 | 20 8 | fsumcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑌 𝐵 ∈ ℂ ) |
| 22 | 15 21 7 | fsummulc1 | ⊢ ( 𝜑 → ( Σ 𝑗 ∈ 𝑋 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑗 ∈ 𝑋 ( 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) ) |
| 23 | 20 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → 𝑌 ∈ Fin ) |
| 24 | 8 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑌 ) → 𝐵 ∈ ℂ ) |
| 25 | 23 7 24 | fsummulc2 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑘 ∈ 𝑌 ( 𝐴 · 𝐵 ) ) |
| 26 | 9 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑌 ) → ( 𝐴 · 𝐵 ) = 𝐷 ) |
| 27 | 26 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → Σ 𝑘 ∈ 𝑌 ( 𝐴 · 𝐵 ) = Σ 𝑘 ∈ 𝑌 𝐷 ) |
| 28 | 25 27 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑘 ∈ 𝑌 𝐷 ) |
| 29 | 28 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝑋 ( 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑗 ∈ 𝑋 Σ 𝑘 ∈ 𝑌 𝐷 ) |
| 30 | elxpi | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ∃ 𝑢 ∃ 𝑣 ( 𝑧 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) ) | |
| 31 | fveq2 | ⊢ ( 〈 𝑢 , 𝑣 〉 = 𝑧 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) ) | |
| 32 | 31 | eqcoms | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) ) |
| 33 | fveq2 | ⊢ ( 〈 𝑢 , 𝑣 〉 = 𝑧 → ( · ‘ 〈 𝑢 , 𝑣 〉 ) = ( · ‘ 𝑧 ) ) | |
| 34 | 33 | eqcoms | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( · ‘ 〈 𝑢 , 𝑣 〉 ) = ( · ‘ 𝑧 ) ) |
| 35 | 32 34 | eqeq12d | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( · ‘ 〈 𝑢 , 𝑣 〉 ) ↔ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) = ( · ‘ 𝑧 ) ) ) |
| 36 | 35 | biimpd | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( · ‘ 〈 𝑢 , 𝑣 〉 ) → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) = ( · ‘ 𝑧 ) ) ) |
| 37 | 4 | ssrab3 | ⊢ 𝑋 ⊆ ℕ |
| 38 | nnsscn | ⊢ ℕ ⊆ ℂ | |
| 39 | 37 38 | sstri | ⊢ 𝑋 ⊆ ℂ |
| 40 | 39 | sseli | ⊢ ( 𝑢 ∈ 𝑋 → 𝑢 ∈ ℂ ) |
| 41 | 5 | ssrab3 | ⊢ 𝑌 ⊆ ℕ |
| 42 | 41 38 | sstri | ⊢ 𝑌 ⊆ ℂ |
| 43 | 42 | sseli | ⊢ ( 𝑣 ∈ 𝑌 → 𝑣 ∈ ℂ ) |
| 44 | ovmpot | ⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ ) → ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) = ( 𝑢 · 𝑣 ) ) | |
| 45 | df-ov | ⊢ ( 𝑢 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) | |
| 46 | df-ov | ⊢ ( 𝑢 · 𝑣 ) = ( · ‘ 〈 𝑢 , 𝑣 〉 ) | |
| 47 | 44 45 46 | 3eqtr3g | ⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ ) → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( · ‘ 〈 𝑢 , 𝑣 〉 ) ) |
| 48 | 40 43 47 | syl2an | ⊢ ( ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( · ‘ 〈 𝑢 , 𝑣 〉 ) ) |
| 49 | 36 48 | impel | ⊢ ( ( 𝑧 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) = ( · ‘ 𝑧 ) ) |
| 50 | 49 | exlimivv | ⊢ ( ∃ 𝑢 ∃ 𝑣 ( 𝑧 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) = ( · ‘ 𝑧 ) ) |
| 51 | 30 50 | syl | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) = ( · ‘ 𝑧 ) ) |
| 52 | 51 | eqcomd | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( · ‘ 𝑧 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) ) |
| 53 | 52 | csbeq1d | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 = ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ) |
| 54 | 53 | sumeq2i | ⊢ Σ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 = Σ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 |
| 55 | fveq2 | ⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ( · ‘ 𝑧 ) = ( · ‘ 〈 𝑗 , 𝑘 〉 ) ) | |
| 56 | df-ov | ⊢ ( 𝑗 · 𝑘 ) = ( · ‘ 〈 𝑗 , 𝑘 〉 ) | |
| 57 | 55 56 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ( · ‘ 𝑧 ) = ( 𝑗 · 𝑘 ) ) |
| 58 | 57 | csbeq1d | ⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 = ⦋ ( 𝑗 · 𝑘 ) / 𝑖 ⦌ 𝐶 ) |
| 59 | ovex | ⊢ ( 𝑗 · 𝑘 ) ∈ V | |
| 60 | 59 10 | csbie | ⊢ ⦋ ( 𝑗 · 𝑘 ) / 𝑖 ⦌ 𝐶 = 𝐷 |
| 61 | 58 60 | eqtrdi | ⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 = 𝐷 ) |
| 62 | 7 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → 𝐴 ∈ ℂ ) |
| 63 | 8 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → 𝐵 ∈ ℂ ) |
| 64 | 62 63 | mulcld | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 65 | 9 64 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → 𝐷 ∈ ℂ ) |
| 66 | 61 15 20 65 | fsumxp | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝑋 Σ 𝑘 ∈ 𝑌 𝐷 = Σ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ) |
| 67 | csbeq1a | ⊢ ( 𝑖 = 𝑤 → 𝐶 = ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ) | |
| 68 | nfcv | ⊢ Ⅎ 𝑤 𝐶 | |
| 69 | nfcsb1v | ⊢ Ⅎ 𝑖 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 | |
| 70 | 67 68 69 | cbvsum | ⊢ Σ 𝑖 ∈ 𝑍 𝐶 = Σ 𝑤 ∈ 𝑍 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 |
| 71 | csbeq1 | ⊢ ( 𝑤 = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) → ⦋ 𝑤 / 𝑖 ⦌ 𝐶 = ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ) | |
| 72 | xpfi | ⊢ ( ( 𝑋 ∈ Fin ∧ 𝑌 ∈ Fin ) → ( 𝑋 × 𝑌 ) ∈ Fin ) | |
| 73 | 15 20 72 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) ∈ Fin ) |
| 74 | 1 2 3 4 5 6 | mpodvdsmulf1o | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1-onto→ 𝑍 ) |
| 75 | fvres | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) ) | |
| 76 | 75 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) ) |
| 77 | 65 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝑋 ∀ 𝑘 ∈ 𝑌 𝐷 ∈ ℂ ) |
| 78 | 61 | eleq1d | ⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ( ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ 𝐷 ∈ ℂ ) ) |
| 79 | 78 | ralxp | ⊢ ( ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑗 ∈ 𝑋 ∀ 𝑘 ∈ 𝑌 𝐷 ∈ ℂ ) |
| 80 | 77 79 | sylibr | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
| 81 | fveq2 | ⊢ ( 𝑧 = 𝑤 → ( · ‘ 𝑧 ) = ( · ‘ 𝑤 ) ) | |
| 82 | 81 | csbeq1d | ⊢ ( 𝑧 = 𝑤 → ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 = ⦋ ( · ‘ 𝑤 ) / 𝑖 ⦌ 𝐶 ) |
| 83 | 82 | eleq1d | ⊢ ( 𝑧 = 𝑤 → ( ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ⦋ ( · ‘ 𝑤 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
| 84 | 83 | cbvralvw | ⊢ ( ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑤 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑤 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
| 85 | id | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → 𝑧 ∈ ( 𝑋 × 𝑌 ) ) | |
| 86 | 82 | eqcoms | ⊢ ( 𝑤 = 𝑧 → ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 = ⦋ ( · ‘ 𝑤 ) / 𝑖 ⦌ 𝐶 ) |
| 87 | 86 | adantl | ⊢ ( ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑤 = 𝑧 ) → ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 = ⦋ ( · ‘ 𝑤 ) / 𝑖 ⦌ 𝐶 ) |
| 88 | 87 | eleq1d | ⊢ ( ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑤 = 𝑧 ) → ( ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ⦋ ( · ‘ 𝑤 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
| 89 | 53 | eleq1d | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
| 90 | 89 | adantr | ⊢ ( ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑤 = 𝑧 ) → ( ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
| 91 | 88 90 | bitr3d | ⊢ ( ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑤 = 𝑧 ) → ( ⦋ ( · ‘ 𝑤 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
| 92 | 85 91 | rspcdv | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ∀ 𝑤 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑤 ) / 𝑖 ⦌ 𝐶 ∈ ℂ → ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
| 93 | 92 | com12 | ⊢ ( ∀ 𝑤 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑤 ) / 𝑖 ⦌ 𝐶 ∈ ℂ → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
| 94 | 93 | ralrimiv | ⊢ ( ∀ 𝑤 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑤 ) / 𝑖 ⦌ 𝐶 ∈ ℂ → ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
| 95 | 84 94 | sylbi | ⊢ ( ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ → ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
| 96 | 80 95 | syl | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
| 97 | mpomulf | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) : ( ℂ × ℂ ) ⟶ ℂ | |
| 98 | ffn | ⊢ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) : ( ℂ × ℂ ) ⟶ ℂ → ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) Fn ( ℂ × ℂ ) ) | |
| 99 | 97 98 | ax-mp | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) Fn ( ℂ × ℂ ) |
| 100 | xpss12 | ⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ ) → ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) | |
| 101 | 39 42 100 | mp2an | ⊢ ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) |
| 102 | 71 | eleq1d | ⊢ ( 𝑤 = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) → ( ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
| 103 | 102 | ralima | ⊢ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) Fn ( ℂ × ℂ ) ∧ ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) → ( ∀ 𝑤 ∈ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) “ ( 𝑋 × 𝑌 ) ) ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
| 104 | 99 101 103 | mp2an | ⊢ ( ∀ 𝑤 ∈ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) “ ( 𝑋 × 𝑌 ) ) ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
| 105 | df-ima | ⊢ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) “ ( 𝑋 × 𝑌 ) ) = ran ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) | |
| 106 | f1ofo | ⊢ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1-onto→ 𝑍 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑍 ) | |
| 107 | forn | ⊢ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑍 → ran ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) = 𝑍 ) | |
| 108 | 74 106 107 | 3syl | ⊢ ( 𝜑 → ran ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) = 𝑍 ) |
| 109 | 105 108 | eqtrid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) “ ( 𝑋 × 𝑌 ) ) = 𝑍 ) |
| 110 | 109 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑤 ∈ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) “ ( 𝑋 × 𝑌 ) ) ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑤 ∈ 𝑍 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
| 111 | 104 110 | bitr3id | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑤 ∈ 𝑍 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
| 112 | 96 111 | mpbid | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑍 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
| 113 | 112 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
| 114 | 71 73 74 76 113 | fsumf1o | ⊢ ( 𝜑 → Σ 𝑤 ∈ 𝑍 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 = Σ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ) |
| 115 | 70 114 | eqtrid | ⊢ ( 𝜑 → Σ 𝑖 ∈ 𝑍 𝐶 = Σ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ) |
| 116 | 54 66 115 | 3eqtr4a | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝑋 Σ 𝑘 ∈ 𝑌 𝐷 = Σ 𝑖 ∈ 𝑍 𝐶 ) |
| 117 | 22 29 116 | 3eqtrd | ⊢ ( 𝜑 → ( Σ 𝑗 ∈ 𝑋 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑖 ∈ 𝑍 𝐶 ) |