This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If K is relatively prime to N then it is also relatively prime to any divisor M of N . (Contributed by Mario Carneiro, 19-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpdvds | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → ( 𝐾 gcd 𝑀 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → 𝐾 ∈ ℤ ) | |
| 2 | simpl2 | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → 𝑀 ∈ ℤ ) | |
| 3 | gcddvds | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝐾 gcd 𝑀 ) ∥ 𝐾 ∧ ( 𝐾 gcd 𝑀 ) ∥ 𝑀 ) ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → ( ( 𝐾 gcd 𝑀 ) ∥ 𝐾 ∧ ( 𝐾 gcd 𝑀 ) ∥ 𝑀 ) ) |
| 5 | 4 | simpld | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → ( 𝐾 gcd 𝑀 ) ∥ 𝐾 ) |
| 6 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 7 | simprl | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → ( 𝐾 gcd 𝑁 ) = 1 ) | |
| 8 | 7 | neeq1d | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → ( ( 𝐾 gcd 𝑁 ) ≠ 0 ↔ 1 ≠ 0 ) ) |
| 9 | 6 8 | mpbiri | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → ( 𝐾 gcd 𝑁 ) ≠ 0 ) |
| 10 | 9 | neneqd | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → ¬ ( 𝐾 gcd 𝑁 ) = 0 ) |
| 11 | simprl | ⊢ ( ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) ∧ ( 𝐾 = 0 ∧ 𝑀 = 0 ) ) → 𝐾 = 0 ) | |
| 12 | simprr | ⊢ ( ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) ∧ ( 𝐾 = 0 ∧ 𝑀 = 0 ) ) → 𝑀 = 0 ) | |
| 13 | simplrr | ⊢ ( ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) ∧ ( 𝐾 = 0 ∧ 𝑀 = 0 ) ) → 𝑀 ∥ 𝑁 ) | |
| 14 | 12 13 | eqbrtrrd | ⊢ ( ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) ∧ ( 𝐾 = 0 ∧ 𝑀 = 0 ) ) → 0 ∥ 𝑁 ) |
| 15 | simpll3 | ⊢ ( ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) ∧ ( 𝐾 = 0 ∧ 𝑀 = 0 ) ) → 𝑁 ∈ ℤ ) | |
| 16 | 0dvds | ⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) ∧ ( 𝐾 = 0 ∧ 𝑀 = 0 ) ) → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) |
| 18 | 14 17 | mpbid | ⊢ ( ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) ∧ ( 𝐾 = 0 ∧ 𝑀 = 0 ) ) → 𝑁 = 0 ) |
| 19 | 11 18 | jca | ⊢ ( ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) ∧ ( 𝐾 = 0 ∧ 𝑀 = 0 ) ) → ( 𝐾 = 0 ∧ 𝑁 = 0 ) ) |
| 20 | 19 | ex | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → ( ( 𝐾 = 0 ∧ 𝑀 = 0 ) → ( 𝐾 = 0 ∧ 𝑁 = 0 ) ) ) |
| 21 | simpl3 | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → 𝑁 ∈ ℤ ) | |
| 22 | gcdeq0 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 gcd 𝑁 ) = 0 ↔ ( 𝐾 = 0 ∧ 𝑁 = 0 ) ) ) | |
| 23 | 1 21 22 | syl2anc | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → ( ( 𝐾 gcd 𝑁 ) = 0 ↔ ( 𝐾 = 0 ∧ 𝑁 = 0 ) ) ) |
| 24 | 20 23 | sylibrd | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → ( ( 𝐾 = 0 ∧ 𝑀 = 0 ) → ( 𝐾 gcd 𝑁 ) = 0 ) ) |
| 25 | 10 24 | mtod | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → ¬ ( 𝐾 = 0 ∧ 𝑀 = 0 ) ) |
| 26 | gcdn0cl | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ¬ ( 𝐾 = 0 ∧ 𝑀 = 0 ) ) → ( 𝐾 gcd 𝑀 ) ∈ ℕ ) | |
| 27 | 1 2 25 26 | syl21anc | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → ( 𝐾 gcd 𝑀 ) ∈ ℕ ) |
| 28 | 27 | nnzd | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → ( 𝐾 gcd 𝑀 ) ∈ ℤ ) |
| 29 | 4 | simprd | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → ( 𝐾 gcd 𝑀 ) ∥ 𝑀 ) |
| 30 | simprr | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → 𝑀 ∥ 𝑁 ) | |
| 31 | 28 2 21 29 30 | dvdstrd | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → ( 𝐾 gcd 𝑀 ) ∥ 𝑁 ) |
| 32 | 10 23 | mtbid | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → ¬ ( 𝐾 = 0 ∧ 𝑁 = 0 ) ) |
| 33 | dvdslegcd | ⊢ ( ( ( ( 𝐾 gcd 𝑀 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝐾 = 0 ∧ 𝑁 = 0 ) ) → ( ( ( 𝐾 gcd 𝑀 ) ∥ 𝐾 ∧ ( 𝐾 gcd 𝑀 ) ∥ 𝑁 ) → ( 𝐾 gcd 𝑀 ) ≤ ( 𝐾 gcd 𝑁 ) ) ) | |
| 34 | 28 1 21 32 33 | syl31anc | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → ( ( ( 𝐾 gcd 𝑀 ) ∥ 𝐾 ∧ ( 𝐾 gcd 𝑀 ) ∥ 𝑁 ) → ( 𝐾 gcd 𝑀 ) ≤ ( 𝐾 gcd 𝑁 ) ) ) |
| 35 | 5 31 34 | mp2and | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → ( 𝐾 gcd 𝑀 ) ≤ ( 𝐾 gcd 𝑁 ) ) |
| 36 | 35 7 | breqtrd | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → ( 𝐾 gcd 𝑀 ) ≤ 1 ) |
| 37 | nnle1eq1 | ⊢ ( ( 𝐾 gcd 𝑀 ) ∈ ℕ → ( ( 𝐾 gcd 𝑀 ) ≤ 1 ↔ ( 𝐾 gcd 𝑀 ) = 1 ) ) | |
| 38 | 27 37 | syl | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → ( ( 𝐾 gcd 𝑀 ) ≤ 1 ↔ ( 𝐾 gcd 𝑀 ) = 1 ) ) |
| 39 | 36 38 | mpbid | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝐾 gcd 𝑁 ) = 1 ∧ 𝑀 ∥ 𝑁 ) ) → ( 𝐾 gcd 𝑀 ) = 1 ) |