This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If M and N are two coprime integers, multiplication forms a bijection from the set of pairs <. j , k >. where j || M and k || N , to the set of divisors of M x. N . (Contributed by Mario Carneiro, 2-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsmulf1o.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| dvdsmulf1o.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | ||
| dvdsmulf1o.3 | ⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 1 ) | ||
| dvdsmulf1o.x | ⊢ 𝑋 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } | ||
| dvdsmulf1o.y | ⊢ 𝑌 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } | ||
| dvdsmulf1o.z | ⊢ 𝑍 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑀 · 𝑁 ) } | ||
| Assertion | dvdsmulf1o | ⊢ ( 𝜑 → ( · ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1-onto→ 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsmulf1o.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| 2 | dvdsmulf1o.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 3 | dvdsmulf1o.3 | ⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 1 ) | |
| 4 | dvdsmulf1o.x | ⊢ 𝑋 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } | |
| 5 | dvdsmulf1o.y | ⊢ 𝑌 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } | |
| 6 | dvdsmulf1o.z | ⊢ 𝑍 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑀 · 𝑁 ) } | |
| 7 | ax-mulf | ⊢ · : ( ℂ × ℂ ) ⟶ ℂ | |
| 8 | ffn | ⊢ ( · : ( ℂ × ℂ ) ⟶ ℂ → · Fn ( ℂ × ℂ ) ) | |
| 9 | 7 8 | ax-mp | ⊢ · Fn ( ℂ × ℂ ) |
| 10 | 4 | ssrab3 | ⊢ 𝑋 ⊆ ℕ |
| 11 | nnsscn | ⊢ ℕ ⊆ ℂ | |
| 12 | 10 11 | sstri | ⊢ 𝑋 ⊆ ℂ |
| 13 | 5 | ssrab3 | ⊢ 𝑌 ⊆ ℕ |
| 14 | 13 11 | sstri | ⊢ 𝑌 ⊆ ℂ |
| 15 | xpss12 | ⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ ) → ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) | |
| 16 | 12 14 15 | mp2an | ⊢ ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) |
| 17 | fnssres | ⊢ ( ( · Fn ( ℂ × ℂ ) ∧ ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) → ( · ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) ) | |
| 18 | 9 16 17 | mp2an | ⊢ ( · ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) |
| 19 | 18 | a1i | ⊢ ( 𝜑 → ( · ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) ) |
| 20 | ovres | ⊢ ( ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ( · ↾ ( 𝑋 × 𝑌 ) ) 𝑗 ) = ( 𝑖 · 𝑗 ) ) | |
| 21 | 20 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 ( · ↾ ( 𝑋 × 𝑌 ) ) 𝑗 ) = ( 𝑖 · 𝑗 ) ) |
| 22 | breq1 | ⊢ ( 𝑥 = 𝑖 → ( 𝑥 ∥ 𝑀 ↔ 𝑖 ∥ 𝑀 ) ) | |
| 23 | 22 4 | elrab2 | ⊢ ( 𝑖 ∈ 𝑋 ↔ ( 𝑖 ∈ ℕ ∧ 𝑖 ∥ 𝑀 ) ) |
| 24 | 23 | simplbi | ⊢ ( 𝑖 ∈ 𝑋 → 𝑖 ∈ ℕ ) |
| 25 | 24 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑖 ∈ ℕ ) |
| 26 | breq1 | ⊢ ( 𝑥 = 𝑗 → ( 𝑥 ∥ 𝑁 ↔ 𝑗 ∥ 𝑁 ) ) | |
| 27 | 26 5 | elrab2 | ⊢ ( 𝑗 ∈ 𝑌 ↔ ( 𝑗 ∈ ℕ ∧ 𝑗 ∥ 𝑁 ) ) |
| 28 | 27 | simplbi | ⊢ ( 𝑗 ∈ 𝑌 → 𝑗 ∈ ℕ ) |
| 29 | 28 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑗 ∈ ℕ ) |
| 30 | 25 29 | nnmulcld | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 · 𝑗 ) ∈ ℕ ) |
| 31 | 27 | simprbi | ⊢ ( 𝑗 ∈ 𝑌 → 𝑗 ∥ 𝑁 ) |
| 32 | 31 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑗 ∥ 𝑁 ) |
| 33 | 23 | simprbi | ⊢ ( 𝑖 ∈ 𝑋 → 𝑖 ∥ 𝑀 ) |
| 34 | 33 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑖 ∥ 𝑀 ) |
| 35 | 29 | nnzd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑗 ∈ ℤ ) |
| 36 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑁 ∈ ℕ ) |
| 37 | 36 | nnzd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑁 ∈ ℤ ) |
| 38 | 25 | nnzd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑖 ∈ ℤ ) |
| 39 | dvdscmul | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( 𝑗 ∥ 𝑁 → ( 𝑖 · 𝑗 ) ∥ ( 𝑖 · 𝑁 ) ) ) | |
| 40 | 35 37 38 39 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑗 ∥ 𝑁 → ( 𝑖 · 𝑗 ) ∥ ( 𝑖 · 𝑁 ) ) ) |
| 41 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑀 ∈ ℕ ) |
| 42 | 41 | nnzd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑀 ∈ ℤ ) |
| 43 | dvdsmulc | ⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑖 ∥ 𝑀 → ( 𝑖 · 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) ) | |
| 44 | 38 42 37 43 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 ∥ 𝑀 → ( 𝑖 · 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 45 | 30 | nnzd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 · 𝑗 ) ∈ ℤ ) |
| 46 | 38 37 | zmulcld | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 · 𝑁 ) ∈ ℤ ) |
| 47 | 42 37 | zmulcld | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) |
| 48 | dvdstr | ⊢ ( ( ( 𝑖 · 𝑗 ) ∈ ℤ ∧ ( 𝑖 · 𝑁 ) ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ∈ ℤ ) → ( ( ( 𝑖 · 𝑗 ) ∥ ( 𝑖 · 𝑁 ) ∧ ( 𝑖 · 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) → ( 𝑖 · 𝑗 ) ∥ ( 𝑀 · 𝑁 ) ) ) | |
| 49 | 45 46 47 48 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( ( ( 𝑖 · 𝑗 ) ∥ ( 𝑖 · 𝑁 ) ∧ ( 𝑖 · 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) → ( 𝑖 · 𝑗 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 50 | 40 44 49 | syl2and | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( ( 𝑗 ∥ 𝑁 ∧ 𝑖 ∥ 𝑀 ) → ( 𝑖 · 𝑗 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 51 | 32 34 50 | mp2and | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 · 𝑗 ) ∥ ( 𝑀 · 𝑁 ) ) |
| 52 | breq1 | ⊢ ( 𝑥 = ( 𝑖 · 𝑗 ) → ( 𝑥 ∥ ( 𝑀 · 𝑁 ) ↔ ( 𝑖 · 𝑗 ) ∥ ( 𝑀 · 𝑁 ) ) ) | |
| 53 | 52 6 | elrab2 | ⊢ ( ( 𝑖 · 𝑗 ) ∈ 𝑍 ↔ ( ( 𝑖 · 𝑗 ) ∈ ℕ ∧ ( 𝑖 · 𝑗 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 54 | 30 51 53 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 · 𝑗 ) ∈ 𝑍 ) |
| 55 | 21 54 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 ( · ↾ ( 𝑋 × 𝑌 ) ) 𝑗 ) ∈ 𝑍 ) |
| 56 | 55 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑋 ∀ 𝑗 ∈ 𝑌 ( 𝑖 ( · ↾ ( 𝑋 × 𝑌 ) ) 𝑗 ) ∈ 𝑍 ) |
| 57 | ffnov | ⊢ ( ( · ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ↔ ( ( · ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) ∧ ∀ 𝑖 ∈ 𝑋 ∀ 𝑗 ∈ 𝑌 ( 𝑖 ( · ↾ ( 𝑋 × 𝑌 ) ) 𝑗 ) ∈ 𝑍 ) ) | |
| 58 | 19 56 57 | sylanbrc | ⊢ ( 𝜑 → ( · ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) |
| 59 | 25 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∈ ℕ ) |
| 60 | 59 | nnnn0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∈ ℕ0 ) |
| 61 | simprll | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∈ 𝑋 ) | |
| 62 | breq1 | ⊢ ( 𝑥 = 𝑚 → ( 𝑥 ∥ 𝑀 ↔ 𝑚 ∥ 𝑀 ) ) | |
| 63 | 62 4 | elrab2 | ⊢ ( 𝑚 ∈ 𝑋 ↔ ( 𝑚 ∈ ℕ ∧ 𝑚 ∥ 𝑀 ) ) |
| 64 | 63 | simplbi | ⊢ ( 𝑚 ∈ 𝑋 → 𝑚 ∈ ℕ ) |
| 65 | 61 64 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∈ ℕ ) |
| 66 | 65 | nnnn0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∈ ℕ0 ) |
| 67 | 59 | nnzd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∈ ℤ ) |
| 68 | 29 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑗 ∈ ℕ ) |
| 69 | 68 | nnzd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑗 ∈ ℤ ) |
| 70 | dvdsmul1 | ⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → 𝑖 ∥ ( 𝑖 · 𝑗 ) ) | |
| 71 | 67 69 70 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∥ ( 𝑖 · 𝑗 ) ) |
| 72 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) | |
| 73 | 12 61 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∈ ℂ ) |
| 74 | simprlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑛 ∈ 𝑌 ) | |
| 75 | breq1 | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∥ 𝑁 ↔ 𝑛 ∥ 𝑁 ) ) | |
| 76 | 75 5 | elrab2 | ⊢ ( 𝑛 ∈ 𝑌 ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ∥ 𝑁 ) ) |
| 77 | 76 | simplbi | ⊢ ( 𝑛 ∈ 𝑌 → 𝑛 ∈ ℕ ) |
| 78 | 74 77 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑛 ∈ ℕ ) |
| 79 | 78 | nncnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑛 ∈ ℂ ) |
| 80 | 73 79 | mulcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑚 · 𝑛 ) = ( 𝑛 · 𝑚 ) ) |
| 81 | 72 80 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 · 𝑗 ) = ( 𝑛 · 𝑚 ) ) |
| 82 | 71 81 | breqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∥ ( 𝑛 · 𝑚 ) ) |
| 83 | 78 | nnzd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑛 ∈ ℤ ) |
| 84 | 37 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑁 ∈ ℤ ) |
| 85 | 67 84 | gcdcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 gcd 𝑁 ) = ( 𝑁 gcd 𝑖 ) ) |
| 86 | 42 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑀 ∈ ℤ ) |
| 87 | 2 | nnzd | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 88 | 1 | nnzd | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 89 | 87 88 | gcdcomd | ⊢ ( 𝜑 → ( 𝑁 gcd 𝑀 ) = ( 𝑀 gcd 𝑁 ) ) |
| 90 | 89 3 | eqtrd | ⊢ ( 𝜑 → ( 𝑁 gcd 𝑀 ) = 1 ) |
| 91 | 90 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑁 gcd 𝑀 ) = 1 ) |
| 92 | 34 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∥ 𝑀 ) |
| 93 | rpdvds | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ( ( 𝑁 gcd 𝑀 ) = 1 ∧ 𝑖 ∥ 𝑀 ) ) → ( 𝑁 gcd 𝑖 ) = 1 ) | |
| 94 | 84 67 86 91 92 93 | syl32anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑁 gcd 𝑖 ) = 1 ) |
| 95 | 85 94 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 gcd 𝑁 ) = 1 ) |
| 96 | 76 | simprbi | ⊢ ( 𝑛 ∈ 𝑌 → 𝑛 ∥ 𝑁 ) |
| 97 | 74 96 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑛 ∥ 𝑁 ) |
| 98 | rpdvds | ⊢ ( ( ( 𝑖 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝑖 gcd 𝑁 ) = 1 ∧ 𝑛 ∥ 𝑁 ) ) → ( 𝑖 gcd 𝑛 ) = 1 ) | |
| 99 | 67 83 84 95 97 98 | syl32anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 gcd 𝑛 ) = 1 ) |
| 100 | 65 | nnzd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∈ ℤ ) |
| 101 | coprmdvds | ⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ ) → ( ( 𝑖 ∥ ( 𝑛 · 𝑚 ) ∧ ( 𝑖 gcd 𝑛 ) = 1 ) → 𝑖 ∥ 𝑚 ) ) | |
| 102 | 67 83 100 101 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( ( 𝑖 ∥ ( 𝑛 · 𝑚 ) ∧ ( 𝑖 gcd 𝑛 ) = 1 ) → 𝑖 ∥ 𝑚 ) ) |
| 103 | 82 99 102 | mp2and | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∥ 𝑚 ) |
| 104 | dvdsmul1 | ⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 𝑚 ∥ ( 𝑚 · 𝑛 ) ) | |
| 105 | 100 83 104 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∥ ( 𝑚 · 𝑛 ) ) |
| 106 | 59 | nncnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∈ ℂ ) |
| 107 | 68 | nncnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑗 ∈ ℂ ) |
| 108 | 106 107 | mulcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 · 𝑗 ) = ( 𝑗 · 𝑖 ) ) |
| 109 | 72 108 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑚 · 𝑛 ) = ( 𝑗 · 𝑖 ) ) |
| 110 | 105 109 | breqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∥ ( 𝑗 · 𝑖 ) ) |
| 111 | 100 84 | gcdcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑚 gcd 𝑁 ) = ( 𝑁 gcd 𝑚 ) ) |
| 112 | 63 | simprbi | ⊢ ( 𝑚 ∈ 𝑋 → 𝑚 ∥ 𝑀 ) |
| 113 | 61 112 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∥ 𝑀 ) |
| 114 | rpdvds | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ( ( 𝑁 gcd 𝑀 ) = 1 ∧ 𝑚 ∥ 𝑀 ) ) → ( 𝑁 gcd 𝑚 ) = 1 ) | |
| 115 | 84 100 86 91 113 114 | syl32anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑁 gcd 𝑚 ) = 1 ) |
| 116 | 111 115 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑚 gcd 𝑁 ) = 1 ) |
| 117 | 32 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑗 ∥ 𝑁 ) |
| 118 | rpdvds | ⊢ ( ( ( 𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝑚 gcd 𝑁 ) = 1 ∧ 𝑗 ∥ 𝑁 ) ) → ( 𝑚 gcd 𝑗 ) = 1 ) | |
| 119 | 100 69 84 116 117 118 | syl32anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑚 gcd 𝑗 ) = 1 ) |
| 120 | coprmdvds | ⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( ( 𝑚 ∥ ( 𝑗 · 𝑖 ) ∧ ( 𝑚 gcd 𝑗 ) = 1 ) → 𝑚 ∥ 𝑖 ) ) | |
| 121 | 100 69 67 120 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( ( 𝑚 ∥ ( 𝑗 · 𝑖 ) ∧ ( 𝑚 gcd 𝑗 ) = 1 ) → 𝑚 ∥ 𝑖 ) ) |
| 122 | 110 119 121 | mp2and | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∥ 𝑖 ) |
| 123 | dvdseq | ⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑖 ∥ 𝑚 ∧ 𝑚 ∥ 𝑖 ) ) → 𝑖 = 𝑚 ) | |
| 124 | 60 66 103 122 123 | syl22anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 = 𝑚 ) |
| 125 | 59 | nnne0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ≠ 0 ) |
| 126 | 124 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 · 𝑛 ) = ( 𝑚 · 𝑛 ) ) |
| 127 | 72 126 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 · 𝑗 ) = ( 𝑖 · 𝑛 ) ) |
| 128 | 107 79 106 125 127 | mulcanad | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑗 = 𝑛 ) |
| 129 | 124 128 | opeq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) |
| 130 | 129 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ) → ( ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) |
| 131 | 130 | ralrimivva | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) |
| 132 | 131 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑋 ∀ 𝑗 ∈ 𝑌 ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) |
| 133 | fvres | ⊢ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) → ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( · ‘ 𝑢 ) ) | |
| 134 | fvres | ⊢ ( 𝑣 ∈ ( 𝑋 × 𝑌 ) → ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) = ( · ‘ 𝑣 ) ) | |
| 135 | 133 134 | eqeqan12d | ⊢ ( ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) → ( ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) ↔ ( · ‘ 𝑢 ) = ( · ‘ 𝑣 ) ) ) |
| 136 | 135 | imbi1d | ⊢ ( ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) → ( ( ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ( ( · ‘ 𝑢 ) = ( · ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) ) |
| 137 | 136 | ralbidva | ⊢ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) → ( ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( · ‘ 𝑢 ) = ( · ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) ) |
| 138 | 137 | ralbiia | ⊢ ( ∀ 𝑢 ∈ ( 𝑋 × 𝑌 ) ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑢 ∈ ( 𝑋 × 𝑌 ) ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( · ‘ 𝑢 ) = ( · ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 139 | fveq2 | ⊢ ( 𝑣 = 〈 𝑚 , 𝑛 〉 → ( · ‘ 𝑣 ) = ( · ‘ 〈 𝑚 , 𝑛 〉 ) ) | |
| 140 | df-ov | ⊢ ( 𝑚 · 𝑛 ) = ( · ‘ 〈 𝑚 , 𝑛 〉 ) | |
| 141 | 139 140 | eqtr4di | ⊢ ( 𝑣 = 〈 𝑚 , 𝑛 〉 → ( · ‘ 𝑣 ) = ( 𝑚 · 𝑛 ) ) |
| 142 | 141 | eqeq2d | ⊢ ( 𝑣 = 〈 𝑚 , 𝑛 〉 → ( ( · ‘ 𝑢 ) = ( · ‘ 𝑣 ) ↔ ( · ‘ 𝑢 ) = ( 𝑚 · 𝑛 ) ) ) |
| 143 | eqeq2 | ⊢ ( 𝑣 = 〈 𝑚 , 𝑛 〉 → ( 𝑢 = 𝑣 ↔ 𝑢 = 〈 𝑚 , 𝑛 〉 ) ) | |
| 144 | 142 143 | imbi12d | ⊢ ( 𝑣 = 〈 𝑚 , 𝑛 〉 → ( ( ( · ‘ 𝑢 ) = ( · ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ( ( · ‘ 𝑢 ) = ( 𝑚 · 𝑛 ) → 𝑢 = 〈 𝑚 , 𝑛 〉 ) ) ) |
| 145 | 144 | ralxp | ⊢ ( ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( · ‘ 𝑢 ) = ( · ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( · ‘ 𝑢 ) = ( 𝑚 · 𝑛 ) → 𝑢 = 〈 𝑚 , 𝑛 〉 ) ) |
| 146 | fveq2 | ⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( · ‘ 𝑢 ) = ( · ‘ 〈 𝑖 , 𝑗 〉 ) ) | |
| 147 | df-ov | ⊢ ( 𝑖 · 𝑗 ) = ( · ‘ 〈 𝑖 , 𝑗 〉 ) | |
| 148 | 146 147 | eqtr4di | ⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( · ‘ 𝑢 ) = ( 𝑖 · 𝑗 ) ) |
| 149 | 148 | eqeq1d | ⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( ( · ‘ 𝑢 ) = ( 𝑚 · 𝑛 ) ↔ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) |
| 150 | eqeq1 | ⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( 𝑢 = 〈 𝑚 , 𝑛 〉 ↔ 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) | |
| 151 | 149 150 | imbi12d | ⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( ( ( · ‘ 𝑢 ) = ( 𝑚 · 𝑛 ) → 𝑢 = 〈 𝑚 , 𝑛 〉 ) ↔ ( ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) ) |
| 152 | 151 | 2ralbidv | ⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( · ‘ 𝑢 ) = ( 𝑚 · 𝑛 ) → 𝑢 = 〈 𝑚 , 𝑛 〉 ) ↔ ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) ) |
| 153 | 145 152 | bitrid | ⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( · ‘ 𝑢 ) = ( · ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) ) |
| 154 | 153 | ralxp | ⊢ ( ∀ 𝑢 ∈ ( 𝑋 × 𝑌 ) ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( · ‘ 𝑢 ) = ( · ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑖 ∈ 𝑋 ∀ 𝑗 ∈ 𝑌 ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) |
| 155 | 138 154 | bitri | ⊢ ( ∀ 𝑢 ∈ ( 𝑋 × 𝑌 ) ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑖 ∈ 𝑋 ∀ 𝑗 ∈ 𝑌 ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) |
| 156 | 132 155 | sylibr | ⊢ ( 𝜑 → ∀ 𝑢 ∈ ( 𝑋 × 𝑌 ) ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 157 | dff13 | ⊢ ( ( · ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1→ 𝑍 ↔ ( ( · ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ∧ ∀ 𝑢 ∈ ( 𝑋 × 𝑌 ) ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) ) | |
| 158 | 58 156 157 | sylanbrc | ⊢ ( 𝜑 → ( · ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1→ 𝑍 ) |
| 159 | breq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∥ ( 𝑀 · 𝑁 ) ↔ 𝑤 ∥ ( 𝑀 · 𝑁 ) ) ) | |
| 160 | 159 6 | elrab2 | ⊢ ( 𝑤 ∈ 𝑍 ↔ ( 𝑤 ∈ ℕ ∧ 𝑤 ∥ ( 𝑀 · 𝑁 ) ) ) |
| 161 | 160 | simplbi | ⊢ ( 𝑤 ∈ 𝑍 → 𝑤 ∈ ℕ ) |
| 162 | 161 | adantl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑤 ∈ ℕ ) |
| 163 | 162 | nnzd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑤 ∈ ℤ ) |
| 164 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑀 ∈ ℕ ) |
| 165 | 164 | nnzd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑀 ∈ ℤ ) |
| 166 | 164 | nnne0d | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑀 ≠ 0 ) |
| 167 | simpr | ⊢ ( ( 𝑤 = 0 ∧ 𝑀 = 0 ) → 𝑀 = 0 ) | |
| 168 | 167 | necon3ai | ⊢ ( 𝑀 ≠ 0 → ¬ ( 𝑤 = 0 ∧ 𝑀 = 0 ) ) |
| 169 | 166 168 | syl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ¬ ( 𝑤 = 0 ∧ 𝑀 = 0 ) ) |
| 170 | gcdn0cl | ⊢ ( ( ( 𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ¬ ( 𝑤 = 0 ∧ 𝑀 = 0 ) ) → ( 𝑤 gcd 𝑀 ) ∈ ℕ ) | |
| 171 | 163 165 169 170 | syl21anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑀 ) ∈ ℕ ) |
| 172 | gcddvds | ⊢ ( ( 𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑤 gcd 𝑀 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑀 ) ∥ 𝑀 ) ) | |
| 173 | 163 165 172 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ( 𝑤 gcd 𝑀 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑀 ) ∥ 𝑀 ) ) |
| 174 | 173 | simprd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑀 ) ∥ 𝑀 ) |
| 175 | breq1 | ⊢ ( 𝑥 = ( 𝑤 gcd 𝑀 ) → ( 𝑥 ∥ 𝑀 ↔ ( 𝑤 gcd 𝑀 ) ∥ 𝑀 ) ) | |
| 176 | 175 4 | elrab2 | ⊢ ( ( 𝑤 gcd 𝑀 ) ∈ 𝑋 ↔ ( ( 𝑤 gcd 𝑀 ) ∈ ℕ ∧ ( 𝑤 gcd 𝑀 ) ∥ 𝑀 ) ) |
| 177 | 171 174 176 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑀 ) ∈ 𝑋 ) |
| 178 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑁 ∈ ℕ ) |
| 179 | 178 | nnzd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑁 ∈ ℤ ) |
| 180 | 178 | nnne0d | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑁 ≠ 0 ) |
| 181 | simpr | ⊢ ( ( 𝑤 = 0 ∧ 𝑁 = 0 ) → 𝑁 = 0 ) | |
| 182 | 181 | necon3ai | ⊢ ( 𝑁 ≠ 0 → ¬ ( 𝑤 = 0 ∧ 𝑁 = 0 ) ) |
| 183 | 180 182 | syl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ¬ ( 𝑤 = 0 ∧ 𝑁 = 0 ) ) |
| 184 | gcdn0cl | ⊢ ( ( ( 𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑤 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑤 gcd 𝑁 ) ∈ ℕ ) | |
| 185 | 163 179 183 184 | syl21anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑁 ) ∈ ℕ ) |
| 186 | gcddvds | ⊢ ( ( 𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑤 gcd 𝑁 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑁 ) ∥ 𝑁 ) ) | |
| 187 | 163 179 186 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ( 𝑤 gcd 𝑁 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 188 | 187 | simprd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑁 ) ∥ 𝑁 ) |
| 189 | breq1 | ⊢ ( 𝑥 = ( 𝑤 gcd 𝑁 ) → ( 𝑥 ∥ 𝑁 ↔ ( 𝑤 gcd 𝑁 ) ∥ 𝑁 ) ) | |
| 190 | 189 5 | elrab2 | ⊢ ( ( 𝑤 gcd 𝑁 ) ∈ 𝑌 ↔ ( ( 𝑤 gcd 𝑁 ) ∈ ℕ ∧ ( 𝑤 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 191 | 185 188 190 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑁 ) ∈ 𝑌 ) |
| 192 | 177 191 | opelxpd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 193 | 192 | fvresd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) = ( · ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) ) |
| 194 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑀 gcd 𝑁 ) = 1 ) |
| 195 | rpmulgcd2 | ⊢ ( ( ( 𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = ( ( 𝑤 gcd 𝑀 ) · ( 𝑤 gcd 𝑁 ) ) ) | |
| 196 | 163 165 179 194 195 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = ( ( 𝑤 gcd 𝑀 ) · ( 𝑤 gcd 𝑁 ) ) ) |
| 197 | df-ov | ⊢ ( ( 𝑤 gcd 𝑀 ) · ( 𝑤 gcd 𝑁 ) ) = ( · ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) | |
| 198 | 196 197 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = ( · ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) ) |
| 199 | 160 | simprbi | ⊢ ( 𝑤 ∈ 𝑍 → 𝑤 ∥ ( 𝑀 · 𝑁 ) ) |
| 200 | 199 | adantl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑤 ∥ ( 𝑀 · 𝑁 ) ) |
| 201 | 1 2 | nnmulcld | ⊢ ( 𝜑 → ( 𝑀 · 𝑁 ) ∈ ℕ ) |
| 202 | gcdeq | ⊢ ( ( 𝑤 ∈ ℕ ∧ ( 𝑀 · 𝑁 ) ∈ ℕ ) → ( ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = 𝑤 ↔ 𝑤 ∥ ( 𝑀 · 𝑁 ) ) ) | |
| 203 | 161 201 202 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = 𝑤 ↔ 𝑤 ∥ ( 𝑀 · 𝑁 ) ) ) |
| 204 | 200 203 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = 𝑤 ) |
| 205 | 193 198 204 | 3eqtr2rd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑤 = ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) ) |
| 206 | fveq2 | ⊢ ( 𝑢 = 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 → ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) ) | |
| 207 | 206 | rspceeqv | ⊢ ( ( 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑤 = ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) ) → ∃ 𝑢 ∈ ( 𝑋 × 𝑌 ) 𝑤 = ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) ) |
| 208 | 192 205 207 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ∃ 𝑢 ∈ ( 𝑋 × 𝑌 ) 𝑤 = ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) ) |
| 209 | 208 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑍 ∃ 𝑢 ∈ ( 𝑋 × 𝑌 ) 𝑤 = ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) ) |
| 210 | dffo3 | ⊢ ( ( · ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑍 ↔ ( ( · ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ∧ ∀ 𝑤 ∈ 𝑍 ∃ 𝑢 ∈ ( 𝑋 × 𝑌 ) 𝑤 = ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) ) ) | |
| 211 | 58 209 210 | sylanbrc | ⊢ ( 𝜑 → ( · ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑍 ) |
| 212 | df-f1o | ⊢ ( ( · ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1-onto→ 𝑍 ↔ ( ( · ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1→ 𝑍 ∧ ( · ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑍 ) ) | |
| 213 | 158 211 212 | sylanbrc | ⊢ ( 𝜑 → ( · ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1-onto→ 𝑍 ) |