This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for minveco . The sequence formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014) (Revised by AV, 4-Oct-2020) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | minveco.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| minveco.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| minveco.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| minveco.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| minveco.u | ⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) | ||
| minveco.w | ⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) | ||
| minveco.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| minveco.d | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| minveco.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| minveco.r | ⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | ||
| minveco.s | ⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) | ||
| minveco.f | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑌 ) | ||
| minveco.1 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) | ||
| Assertion | minvecolem3 | ⊢ ( 𝜑 → 𝐹 ∈ ( Cau ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | minveco.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 3 | minveco.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 4 | minveco.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 5 | minveco.u | ⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) | |
| 6 | minveco.w | ⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) | |
| 7 | minveco.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 8 | minveco.d | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 9 | minveco.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 10 | minveco.r | ⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | |
| 11 | minveco.s | ⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) | |
| 12 | minveco.f | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑌 ) | |
| 13 | minveco.1 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) | |
| 14 | 4re | ⊢ 4 ∈ ℝ | |
| 15 | 4pos | ⊢ 0 < 4 | |
| 16 | 14 15 | elrpii | ⊢ 4 ∈ ℝ+ |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) | |
| 18 | 2z | ⊢ 2 ∈ ℤ | |
| 19 | rpexpcl | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( 𝑥 ↑ 2 ) ∈ ℝ+ ) | |
| 20 | 17 18 19 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ↑ 2 ) ∈ ℝ+ ) |
| 21 | rpdivcl | ⊢ ( ( 4 ∈ ℝ+ ∧ ( 𝑥 ↑ 2 ) ∈ ℝ+ ) → ( 4 / ( 𝑥 ↑ 2 ) ) ∈ ℝ+ ) | |
| 22 | 16 20 21 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 4 / ( 𝑥 ↑ 2 ) ) ∈ ℝ+ ) |
| 23 | rprege0 | ⊢ ( ( 4 / ( 𝑥 ↑ 2 ) ) ∈ ℝ+ → ( ( 4 / ( 𝑥 ↑ 2 ) ) ∈ ℝ ∧ 0 ≤ ( 4 / ( 𝑥 ↑ 2 ) ) ) ) | |
| 24 | flge0nn0 | ⊢ ( ( ( 4 / ( 𝑥 ↑ 2 ) ) ∈ ℝ ∧ 0 ≤ ( 4 / ( 𝑥 ↑ 2 ) ) ) → ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) ∈ ℕ0 ) | |
| 25 | nn0p1nn | ⊢ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ∈ ℕ ) | |
| 26 | 22 23 24 25 | 4syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ∈ ℕ ) |
| 27 | phnv | ⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) | |
| 28 | 1 8 | imsmet | ⊢ ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 29 | 5 27 28 | 3syl | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 30 | 29 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 31 | 5 27 | syl | ⊢ ( 𝜑 → 𝑈 ∈ NrmCVec ) |
| 32 | inss1 | ⊢ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ⊆ ( SubSp ‘ 𝑈 ) | |
| 33 | 32 6 | sselid | ⊢ ( 𝜑 → 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) |
| 34 | eqid | ⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) | |
| 35 | 1 4 34 | sspba | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → 𝑌 ⊆ 𝑋 ) |
| 36 | 31 33 35 | syl2anc | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 37 | 36 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → 𝑌 ⊆ 𝑋 ) |
| 38 | 12 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → 𝐹 : ℕ ⟶ 𝑌 ) |
| 39 | 26 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ∈ ℕ ) |
| 40 | 38 39 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ∈ 𝑌 ) |
| 41 | 37 40 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ∈ 𝑋 ) |
| 42 | eluznn | ⊢ ( ( ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → 𝑛 ∈ ℕ ) | |
| 43 | 26 42 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → 𝑛 ∈ ℕ ) |
| 44 | 38 43 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑌 ) |
| 45 | 37 44 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) |
| 46 | metcl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) | |
| 47 | 30 41 45 46 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 48 | 47 | resqcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ∈ ℝ ) |
| 49 | 39 | nnrpd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ∈ ℝ+ ) |
| 50 | 49 | rpreccld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ∈ ℝ+ ) |
| 51 | rpmulcl | ⊢ ( ( 4 ∈ ℝ+ ∧ ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ∈ ℝ+ ) → ( 4 · ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) ∈ ℝ+ ) | |
| 52 | 16 50 51 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 4 · ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) ∈ ℝ+ ) |
| 53 | 52 | rpred | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 4 · ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) ∈ ℝ ) |
| 54 | 20 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 𝑥 ↑ 2 ) ∈ ℝ+ ) |
| 55 | 54 | rpred | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 𝑥 ↑ 2 ) ∈ ℝ ) |
| 56 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → 𝑈 ∈ CPreHilOLD ) |
| 57 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) |
| 58 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → 𝐴 ∈ 𝑋 ) |
| 59 | 26 | nnrpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ∈ ℝ+ ) |
| 60 | 59 | rpreccld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ∈ ℝ+ ) |
| 61 | 60 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ∈ ℝ+ ) |
| 62 | 61 | rpred | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ∈ ℝ ) |
| 63 | 61 | rpge0d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → 0 ≤ ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) |
| 64 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝐹 : ℕ ⟶ 𝑌 ) |
| 65 | 64 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑌 ) |
| 66 | 43 65 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑌 ) |
| 67 | fveq2 | ⊢ ( 𝑛 = ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) | |
| 68 | 67 | oveq2d | ⊢ ( 𝑛 = ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) → ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) = ( 𝐴 𝐷 ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) ) |
| 69 | 68 | oveq1d | ⊢ ( 𝑛 = ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) = ( ( 𝐴 𝐷 ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) ↑ 2 ) ) |
| 70 | oveq2 | ⊢ ( 𝑛 = ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) → ( 1 / 𝑛 ) = ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) | |
| 71 | 70 | oveq2d | ⊢ ( 𝑛 = ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) → ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) = ( ( 𝑆 ↑ 2 ) + ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) ) |
| 72 | 69 71 | breq12d | ⊢ ( 𝑛 = ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) → ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ↔ ( ( 𝐴 𝐷 ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) ) ) |
| 73 | 13 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 74 | 73 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ∀ 𝑛 ∈ ℕ ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 75 | 72 74 39 | rspcdva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) ) |
| 76 | 37 66 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) |
| 77 | metcl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) → ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) | |
| 78 | 30 58 76 77 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 79 | 78 | resqcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ∈ ℝ ) |
| 80 | 1 2 3 4 5 6 7 8 9 10 | minvecolem1 | ⊢ ( 𝜑 → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 81 | 0re | ⊢ 0 ∈ ℝ | |
| 82 | breq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝑤 ↔ 0 ≤ 𝑤 ) ) | |
| 83 | 82 | ralbidv | ⊢ ( 𝑥 = 0 → ( ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 84 | 83 | rspcev | ⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
| 85 | 81 84 | mpan | ⊢ ( ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
| 86 | 85 | 3anim3i | ⊢ ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) ) |
| 87 | infrecl | ⊢ ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) → inf ( 𝑅 , ℝ , < ) ∈ ℝ ) | |
| 88 | 80 86 87 | 3syl | ⊢ ( 𝜑 → inf ( 𝑅 , ℝ , < ) ∈ ℝ ) |
| 89 | 11 88 | eqeltrid | ⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 90 | 89 | resqcld | ⊢ ( 𝜑 → ( 𝑆 ↑ 2 ) ∈ ℝ ) |
| 91 | 90 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 𝑆 ↑ 2 ) ∈ ℝ ) |
| 92 | 43 | nnrecred | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 93 | 91 92 | readdcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 94 | 91 62 | readdcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( ( 𝑆 ↑ 2 ) + ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) ∈ ℝ ) |
| 95 | 13 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 96 | 43 95 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
| 97 | eluzle | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) → ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ≤ 𝑛 ) | |
| 98 | 97 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ≤ 𝑛 ) |
| 99 | 49 | rpregt0d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ∈ ℝ ∧ 0 < ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) |
| 100 | nnre | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) | |
| 101 | nngt0 | ⊢ ( 𝑛 ∈ ℕ → 0 < 𝑛 ) | |
| 102 | 100 101 | jca | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) |
| 103 | 43 102 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) |
| 104 | lerec | ⊢ ( ( ( ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ∈ ℝ ∧ 0 < ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ∧ ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) → ( ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ≤ 𝑛 ↔ ( 1 / 𝑛 ) ≤ ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) ) | |
| 105 | 99 103 104 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ≤ 𝑛 ↔ ( 1 / 𝑛 ) ≤ ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) ) |
| 106 | 98 105 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 1 / 𝑛 ) ≤ ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) |
| 107 | 92 62 91 106 | leadd2dd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) ) |
| 108 | 79 93 94 96 107 | letrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) ) |
| 109 | 1 2 3 4 56 57 58 8 9 10 11 62 63 40 66 75 108 | minvecolem2 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( 4 · ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) ) |
| 110 | rpdivcl | ⊢ ( ( ( 𝑥 ↑ 2 ) ∈ ℝ+ ∧ 4 ∈ ℝ+ ) → ( ( 𝑥 ↑ 2 ) / 4 ) ∈ ℝ+ ) | |
| 111 | 54 16 110 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( ( 𝑥 ↑ 2 ) / 4 ) ∈ ℝ+ ) |
| 112 | rpcnne0 | ⊢ ( ( 𝑥 ↑ 2 ) ∈ ℝ+ → ( ( 𝑥 ↑ 2 ) ∈ ℂ ∧ ( 𝑥 ↑ 2 ) ≠ 0 ) ) | |
| 113 | 54 112 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( ( 𝑥 ↑ 2 ) ∈ ℂ ∧ ( 𝑥 ↑ 2 ) ≠ 0 ) ) |
| 114 | rpcnne0 | ⊢ ( 4 ∈ ℝ+ → ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ) | |
| 115 | 16 114 | ax-mp | ⊢ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) |
| 116 | recdiv | ⊢ ( ( ( ( 𝑥 ↑ 2 ) ∈ ℂ ∧ ( 𝑥 ↑ 2 ) ≠ 0 ) ∧ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ) → ( 1 / ( ( 𝑥 ↑ 2 ) / 4 ) ) = ( 4 / ( 𝑥 ↑ 2 ) ) ) | |
| 117 | 113 115 116 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 1 / ( ( 𝑥 ↑ 2 ) / 4 ) ) = ( 4 / ( 𝑥 ↑ 2 ) ) ) |
| 118 | 22 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 4 / ( 𝑥 ↑ 2 ) ) ∈ ℝ+ ) |
| 119 | 118 | rpred | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 4 / ( 𝑥 ↑ 2 ) ) ∈ ℝ ) |
| 120 | flltp1 | ⊢ ( ( 4 / ( 𝑥 ↑ 2 ) ) ∈ ℝ → ( 4 / ( 𝑥 ↑ 2 ) ) < ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) | |
| 121 | 119 120 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 4 / ( 𝑥 ↑ 2 ) ) < ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) |
| 122 | 117 121 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 1 / ( ( 𝑥 ↑ 2 ) / 4 ) ) < ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) |
| 123 | 111 49 122 | ltrec1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) < ( ( 𝑥 ↑ 2 ) / 4 ) ) |
| 124 | 14 15 | pm3.2i | ⊢ ( 4 ∈ ℝ ∧ 0 < 4 ) |
| 125 | ltmuldiv2 | ⊢ ( ( ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ∈ ℝ ∧ ( 𝑥 ↑ 2 ) ∈ ℝ ∧ ( 4 ∈ ℝ ∧ 0 < 4 ) ) → ( ( 4 · ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) < ( 𝑥 ↑ 2 ) ↔ ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) < ( ( 𝑥 ↑ 2 ) / 4 ) ) ) | |
| 126 | 124 125 | mp3an3 | ⊢ ( ( ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ∈ ℝ ∧ ( 𝑥 ↑ 2 ) ∈ ℝ ) → ( ( 4 · ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) < ( 𝑥 ↑ 2 ) ↔ ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) < ( ( 𝑥 ↑ 2 ) / 4 ) ) ) |
| 127 | 62 55 126 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( ( 4 · ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) < ( 𝑥 ↑ 2 ) ↔ ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) < ( ( 𝑥 ↑ 2 ) / 4 ) ) ) |
| 128 | 123 127 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 4 · ( 1 / ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) < ( 𝑥 ↑ 2 ) ) |
| 129 | 48 53 55 109 128 | lelttrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) < ( 𝑥 ↑ 2 ) ) |
| 130 | metge0 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) → 0 ≤ ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ) | |
| 131 | 30 41 45 130 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → 0 ≤ ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ) |
| 132 | rprege0 | ⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) | |
| 133 | 132 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 134 | lt2sq | ⊢ ( ( ( ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ↔ ( ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) < ( 𝑥 ↑ 2 ) ) ) | |
| 135 | 47 131 133 134 | syl21anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ↔ ( ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) < ( 𝑥 ↑ 2 ) ) ) |
| 136 | 129 135 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) → ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ) |
| 137 | 136 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ) |
| 138 | fveq2 | ⊢ ( 𝑗 = ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) | |
| 139 | fveq2 | ⊢ ( 𝑗 = ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ) | |
| 140 | 139 | oveq1d | ⊢ ( 𝑗 = ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) → ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) = ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ) |
| 141 | 140 | breq1d | ⊢ ( 𝑗 = ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) → ( ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ↔ ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ) ) |
| 142 | 138 141 | raleqbidv | ⊢ ( 𝑗 = ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ↔ ∀ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ) ) |
| 143 | 142 | rspcev | ⊢ ( ( ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ∈ ℕ ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) ( ( 𝐹 ‘ ( ( ⌊ ‘ ( 4 / ( 𝑥 ↑ 2 ) ) ) + 1 ) ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ) |
| 144 | 26 137 143 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ) |
| 145 | 144 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ) |
| 146 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 147 | 1 8 | imsxmet | ⊢ ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 148 | 5 27 147 | 3syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 149 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 150 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 151 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 152 | 12 36 | fssd | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) |
| 153 | 146 148 149 150 151 152 | iscauf | ⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑥 ) ) |
| 154 | 145 153 | mpbird | ⊢ ( 𝜑 → 𝐹 ∈ ( Cau ‘ 𝐷 ) ) |