This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square function is increasing on nonnegative reals. (Contributed by NM, 24-Feb-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lt2sq | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ↑ 2 ) < ( 𝐵 ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt2msq | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 · 𝐴 ) < ( 𝐵 · 𝐵 ) ) ) | |
| 2 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 3 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 4 | sqval | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) | |
| 5 | sqval | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) ) | |
| 6 | 4 5 | breqan12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) < ( 𝐵 ↑ 2 ) ↔ ( 𝐴 · 𝐴 ) < ( 𝐵 · 𝐵 ) ) ) |
| 7 | 2 3 6 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ↑ 2 ) < ( 𝐵 ↑ 2 ) ↔ ( 𝐴 · 𝐴 ) < ( 𝐵 · 𝐵 ) ) ) |
| 8 | 7 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 ↑ 2 ) < ( 𝐵 ↑ 2 ) ↔ ( 𝐴 · 𝐴 ) < ( 𝐵 · 𝐵 ) ) ) |
| 9 | 1 8 | bitr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ↑ 2 ) < ( 𝐵 ↑ 2 ) ) ) |