This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for minveco . The sequence formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014) (Revised by AV, 4-Oct-2020) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | minveco.x | |- X = ( BaseSet ` U ) |
|
| minveco.m | |- M = ( -v ` U ) |
||
| minveco.n | |- N = ( normCV ` U ) |
||
| minveco.y | |- Y = ( BaseSet ` W ) |
||
| minveco.u | |- ( ph -> U e. CPreHilOLD ) |
||
| minveco.w | |- ( ph -> W e. ( ( SubSp ` U ) i^i CBan ) ) |
||
| minveco.a | |- ( ph -> A e. X ) |
||
| minveco.d | |- D = ( IndMet ` U ) |
||
| minveco.j | |- J = ( MetOpen ` D ) |
||
| minveco.r | |- R = ran ( y e. Y |-> ( N ` ( A M y ) ) ) |
||
| minveco.s | |- S = inf ( R , RR , < ) |
||
| minveco.f | |- ( ph -> F : NN --> Y ) |
||
| minveco.1 | |- ( ( ph /\ n e. NN ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
||
| Assertion | minvecolem3 | |- ( ph -> F e. ( Cau ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.x | |- X = ( BaseSet ` U ) |
|
| 2 | minveco.m | |- M = ( -v ` U ) |
|
| 3 | minveco.n | |- N = ( normCV ` U ) |
|
| 4 | minveco.y | |- Y = ( BaseSet ` W ) |
|
| 5 | minveco.u | |- ( ph -> U e. CPreHilOLD ) |
|
| 6 | minveco.w | |- ( ph -> W e. ( ( SubSp ` U ) i^i CBan ) ) |
|
| 7 | minveco.a | |- ( ph -> A e. X ) |
|
| 8 | minveco.d | |- D = ( IndMet ` U ) |
|
| 9 | minveco.j | |- J = ( MetOpen ` D ) |
|
| 10 | minveco.r | |- R = ran ( y e. Y |-> ( N ` ( A M y ) ) ) |
|
| 11 | minveco.s | |- S = inf ( R , RR , < ) |
|
| 12 | minveco.f | |- ( ph -> F : NN --> Y ) |
|
| 13 | minveco.1 | |- ( ( ph /\ n e. NN ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
|
| 14 | 4re | |- 4 e. RR |
|
| 15 | 4pos | |- 0 < 4 |
|
| 16 | 14 15 | elrpii | |- 4 e. RR+ |
| 17 | simpr | |- ( ( ph /\ x e. RR+ ) -> x e. RR+ ) |
|
| 18 | 2z | |- 2 e. ZZ |
|
| 19 | rpexpcl | |- ( ( x e. RR+ /\ 2 e. ZZ ) -> ( x ^ 2 ) e. RR+ ) |
|
| 20 | 17 18 19 | sylancl | |- ( ( ph /\ x e. RR+ ) -> ( x ^ 2 ) e. RR+ ) |
| 21 | rpdivcl | |- ( ( 4 e. RR+ /\ ( x ^ 2 ) e. RR+ ) -> ( 4 / ( x ^ 2 ) ) e. RR+ ) |
|
| 22 | 16 20 21 | sylancr | |- ( ( ph /\ x e. RR+ ) -> ( 4 / ( x ^ 2 ) ) e. RR+ ) |
| 23 | rprege0 | |- ( ( 4 / ( x ^ 2 ) ) e. RR+ -> ( ( 4 / ( x ^ 2 ) ) e. RR /\ 0 <_ ( 4 / ( x ^ 2 ) ) ) ) |
|
| 24 | flge0nn0 | |- ( ( ( 4 / ( x ^ 2 ) ) e. RR /\ 0 <_ ( 4 / ( x ^ 2 ) ) ) -> ( |_ ` ( 4 / ( x ^ 2 ) ) ) e. NN0 ) |
|
| 25 | nn0p1nn | |- ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) e. NN0 -> ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. NN ) |
|
| 26 | 22 23 24 25 | 4syl | |- ( ( ph /\ x e. RR+ ) -> ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. NN ) |
| 27 | phnv | |- ( U e. CPreHilOLD -> U e. NrmCVec ) |
|
| 28 | 1 8 | imsmet | |- ( U e. NrmCVec -> D e. ( Met ` X ) ) |
| 29 | 5 27 28 | 3syl | |- ( ph -> D e. ( Met ` X ) ) |
| 30 | 29 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> D e. ( Met ` X ) ) |
| 31 | 5 27 | syl | |- ( ph -> U e. NrmCVec ) |
| 32 | inss1 | |- ( ( SubSp ` U ) i^i CBan ) C_ ( SubSp ` U ) |
|
| 33 | 32 6 | sselid | |- ( ph -> W e. ( SubSp ` U ) ) |
| 34 | eqid | |- ( SubSp ` U ) = ( SubSp ` U ) |
|
| 35 | 1 4 34 | sspba | |- ( ( U e. NrmCVec /\ W e. ( SubSp ` U ) ) -> Y C_ X ) |
| 36 | 31 33 35 | syl2anc | |- ( ph -> Y C_ X ) |
| 37 | 36 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> Y C_ X ) |
| 38 | 12 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> F : NN --> Y ) |
| 39 | 26 | adantr | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. NN ) |
| 40 | 38 39 | ffvelcdmd | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. Y ) |
| 41 | 37 40 | sseldd | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. X ) |
| 42 | eluznn | |- ( ( ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. NN /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> n e. NN ) |
|
| 43 | 26 42 | sylan | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> n e. NN ) |
| 44 | 38 43 | ffvelcdmd | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( F ` n ) e. Y ) |
| 45 | 37 44 | sseldd | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( F ` n ) e. X ) |
| 46 | metcl | |- ( ( D e. ( Met ` X ) /\ ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. X /\ ( F ` n ) e. X ) -> ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) e. RR ) |
|
| 47 | 30 41 45 46 | syl3anc | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) e. RR ) |
| 48 | 47 | resqcld | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ^ 2 ) e. RR ) |
| 49 | 39 | nnrpd | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. RR+ ) |
| 50 | 49 | rpreccld | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. RR+ ) |
| 51 | rpmulcl | |- ( ( 4 e. RR+ /\ ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. RR+ ) -> ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) e. RR+ ) |
|
| 52 | 16 50 51 | sylancr | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) e. RR+ ) |
| 53 | 52 | rpred | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) e. RR ) |
| 54 | 20 | adantr | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( x ^ 2 ) e. RR+ ) |
| 55 | 54 | rpred | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( x ^ 2 ) e. RR ) |
| 56 | 5 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> U e. CPreHilOLD ) |
| 57 | 6 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> W e. ( ( SubSp ` U ) i^i CBan ) ) |
| 58 | 7 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> A e. X ) |
| 59 | 26 | nnrpd | |- ( ( ph /\ x e. RR+ ) -> ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. RR+ ) |
| 60 | 59 | rpreccld | |- ( ( ph /\ x e. RR+ ) -> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. RR+ ) |
| 61 | 60 | adantr | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. RR+ ) |
| 62 | 61 | rpred | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. RR ) |
| 63 | 61 | rpge0d | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> 0 <_ ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) |
| 64 | 12 | adantr | |- ( ( ph /\ x e. RR+ ) -> F : NN --> Y ) |
| 65 | 64 | ffvelcdmda | |- ( ( ( ph /\ x e. RR+ ) /\ n e. NN ) -> ( F ` n ) e. Y ) |
| 66 | 43 65 | syldan | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( F ` n ) e. Y ) |
| 67 | fveq2 | |- ( n = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( F ` n ) = ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) |
|
| 68 | 67 | oveq2d | |- ( n = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( A D ( F ` n ) ) = ( A D ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) |
| 69 | 68 | oveq1d | |- ( n = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( ( A D ( F ` n ) ) ^ 2 ) = ( ( A D ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ^ 2 ) ) |
| 70 | oveq2 | |- ( n = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( 1 / n ) = ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) |
|
| 71 | 70 | oveq2d | |- ( n = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( ( S ^ 2 ) + ( 1 / n ) ) = ( ( S ^ 2 ) + ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) |
| 72 | 69 71 | breq12d | |- ( n = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) <-> ( ( A D ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) ) |
| 73 | 13 | ralrimiva | |- ( ph -> A. n e. NN ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
| 74 | 73 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> A. n e. NN ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
| 75 | 72 74 39 | rspcdva | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( A D ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) |
| 76 | 37 66 | sseldd | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( F ` n ) e. X ) |
| 77 | metcl | |- ( ( D e. ( Met ` X ) /\ A e. X /\ ( F ` n ) e. X ) -> ( A D ( F ` n ) ) e. RR ) |
|
| 78 | 30 58 76 77 | syl3anc | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( A D ( F ` n ) ) e. RR ) |
| 79 | 78 | resqcld | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( A D ( F ` n ) ) ^ 2 ) e. RR ) |
| 80 | 1 2 3 4 5 6 7 8 9 10 | minvecolem1 | |- ( ph -> ( R C_ RR /\ R =/= (/) /\ A. w e. R 0 <_ w ) ) |
| 81 | 0re | |- 0 e. RR |
|
| 82 | breq1 | |- ( x = 0 -> ( x <_ w <-> 0 <_ w ) ) |
|
| 83 | 82 | ralbidv | |- ( x = 0 -> ( A. w e. R x <_ w <-> A. w e. R 0 <_ w ) ) |
| 84 | 83 | rspcev | |- ( ( 0 e. RR /\ A. w e. R 0 <_ w ) -> E. x e. RR A. w e. R x <_ w ) |
| 85 | 81 84 | mpan | |- ( A. w e. R 0 <_ w -> E. x e. RR A. w e. R x <_ w ) |
| 86 | 85 | 3anim3i | |- ( ( R C_ RR /\ R =/= (/) /\ A. w e. R 0 <_ w ) -> ( R C_ RR /\ R =/= (/) /\ E. x e. RR A. w e. R x <_ w ) ) |
| 87 | infrecl | |- ( ( R C_ RR /\ R =/= (/) /\ E. x e. RR A. w e. R x <_ w ) -> inf ( R , RR , < ) e. RR ) |
|
| 88 | 80 86 87 | 3syl | |- ( ph -> inf ( R , RR , < ) e. RR ) |
| 89 | 11 88 | eqeltrid | |- ( ph -> S e. RR ) |
| 90 | 89 | resqcld | |- ( ph -> ( S ^ 2 ) e. RR ) |
| 91 | 90 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( S ^ 2 ) e. RR ) |
| 92 | 43 | nnrecred | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / n ) e. RR ) |
| 93 | 91 92 | readdcld | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( S ^ 2 ) + ( 1 / n ) ) e. RR ) |
| 94 | 91 62 | readdcld | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( S ^ 2 ) + ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) e. RR ) |
| 95 | 13 | adantlr | |- ( ( ( ph /\ x e. RR+ ) /\ n e. NN ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
| 96 | 43 95 | syldan | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
| 97 | eluzle | |- ( n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) -> ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) <_ n ) |
|
| 98 | 97 | adantl | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) <_ n ) |
| 99 | 49 | rpregt0d | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. RR /\ 0 < ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) |
| 100 | nnre | |- ( n e. NN -> n e. RR ) |
|
| 101 | nngt0 | |- ( n e. NN -> 0 < n ) |
|
| 102 | 100 101 | jca | |- ( n e. NN -> ( n e. RR /\ 0 < n ) ) |
| 103 | 43 102 | syl | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( n e. RR /\ 0 < n ) ) |
| 104 | lerec | |- ( ( ( ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. RR /\ 0 < ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) /\ ( n e. RR /\ 0 < n ) ) -> ( ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) <_ n <-> ( 1 / n ) <_ ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) |
|
| 105 | 99 103 104 | syl2anc | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) <_ n <-> ( 1 / n ) <_ ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) |
| 106 | 98 105 | mpbid | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / n ) <_ ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) |
| 107 | 92 62 91 106 | leadd2dd | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( S ^ 2 ) + ( 1 / n ) ) <_ ( ( S ^ 2 ) + ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) |
| 108 | 79 93 94 96 107 | letrd | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) |
| 109 | 1 2 3 4 56 57 58 8 9 10 11 62 63 40 66 75 108 | minvecolem2 | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ^ 2 ) <_ ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) |
| 110 | rpdivcl | |- ( ( ( x ^ 2 ) e. RR+ /\ 4 e. RR+ ) -> ( ( x ^ 2 ) / 4 ) e. RR+ ) |
|
| 111 | 54 16 110 | sylancl | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( x ^ 2 ) / 4 ) e. RR+ ) |
| 112 | rpcnne0 | |- ( ( x ^ 2 ) e. RR+ -> ( ( x ^ 2 ) e. CC /\ ( x ^ 2 ) =/= 0 ) ) |
|
| 113 | 54 112 | syl | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( x ^ 2 ) e. CC /\ ( x ^ 2 ) =/= 0 ) ) |
| 114 | rpcnne0 | |- ( 4 e. RR+ -> ( 4 e. CC /\ 4 =/= 0 ) ) |
|
| 115 | 16 114 | ax-mp | |- ( 4 e. CC /\ 4 =/= 0 ) |
| 116 | recdiv | |- ( ( ( ( x ^ 2 ) e. CC /\ ( x ^ 2 ) =/= 0 ) /\ ( 4 e. CC /\ 4 =/= 0 ) ) -> ( 1 / ( ( x ^ 2 ) / 4 ) ) = ( 4 / ( x ^ 2 ) ) ) |
|
| 117 | 113 115 116 | sylancl | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / ( ( x ^ 2 ) / 4 ) ) = ( 4 / ( x ^ 2 ) ) ) |
| 118 | 22 | adantr | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 4 / ( x ^ 2 ) ) e. RR+ ) |
| 119 | 118 | rpred | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 4 / ( x ^ 2 ) ) e. RR ) |
| 120 | flltp1 | |- ( ( 4 / ( x ^ 2 ) ) e. RR -> ( 4 / ( x ^ 2 ) ) < ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) |
|
| 121 | 119 120 | syl | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 4 / ( x ^ 2 ) ) < ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) |
| 122 | 117 121 | eqbrtrd | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / ( ( x ^ 2 ) / 4 ) ) < ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) |
| 123 | 111 49 122 | ltrec1d | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) < ( ( x ^ 2 ) / 4 ) ) |
| 124 | 14 15 | pm3.2i | |- ( 4 e. RR /\ 0 < 4 ) |
| 125 | ltmuldiv2 | |- ( ( ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. RR /\ ( x ^ 2 ) e. RR /\ ( 4 e. RR /\ 0 < 4 ) ) -> ( ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) < ( x ^ 2 ) <-> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) < ( ( x ^ 2 ) / 4 ) ) ) |
|
| 126 | 124 125 | mp3an3 | |- ( ( ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. RR /\ ( x ^ 2 ) e. RR ) -> ( ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) < ( x ^ 2 ) <-> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) < ( ( x ^ 2 ) / 4 ) ) ) |
| 127 | 62 55 126 | syl2anc | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) < ( x ^ 2 ) <-> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) < ( ( x ^ 2 ) / 4 ) ) ) |
| 128 | 123 127 | mpbird | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) < ( x ^ 2 ) ) |
| 129 | 48 53 55 109 128 | lelttrd | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ^ 2 ) < ( x ^ 2 ) ) |
| 130 | metge0 | |- ( ( D e. ( Met ` X ) /\ ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. X /\ ( F ` n ) e. X ) -> 0 <_ ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ) |
|
| 131 | 30 41 45 130 | syl3anc | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> 0 <_ ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ) |
| 132 | rprege0 | |- ( x e. RR+ -> ( x e. RR /\ 0 <_ x ) ) |
|
| 133 | 132 | ad2antlr | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( x e. RR /\ 0 <_ x ) ) |
| 134 | lt2sq | |- ( ( ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) e. RR /\ 0 <_ ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ) /\ ( x e. RR /\ 0 <_ x ) ) -> ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) < x <-> ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ^ 2 ) < ( x ^ 2 ) ) ) |
|
| 135 | 47 131 133 134 | syl21anc | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) < x <-> ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ^ 2 ) < ( x ^ 2 ) ) ) |
| 136 | 129 135 | mpbird | |- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) < x ) |
| 137 | 136 | ralrimiva | |- ( ( ph /\ x e. RR+ ) -> A. n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) < x ) |
| 138 | fveq2 | |- ( j = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( ZZ>= ` j ) = ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) |
|
| 139 | fveq2 | |- ( j = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( F ` j ) = ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) |
|
| 140 | 139 | oveq1d | |- ( j = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( ( F ` j ) D ( F ` n ) ) = ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ) |
| 141 | 140 | breq1d | |- ( j = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( ( ( F ` j ) D ( F ` n ) ) < x <-> ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) < x ) ) |
| 142 | 138 141 | raleqbidv | |- ( j = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x <-> A. n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) < x ) ) |
| 143 | 142 | rspcev | |- ( ( ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. NN /\ A. n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) < x ) -> E. j e. NN A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) |
| 144 | 26 137 143 | syl2anc | |- ( ( ph /\ x e. RR+ ) -> E. j e. NN A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) |
| 145 | 144 | ralrimiva | |- ( ph -> A. x e. RR+ E. j e. NN A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) |
| 146 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 147 | 1 8 | imsxmet | |- ( U e. NrmCVec -> D e. ( *Met ` X ) ) |
| 148 | 5 27 147 | 3syl | |- ( ph -> D e. ( *Met ` X ) ) |
| 149 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 150 | eqidd | |- ( ( ph /\ n e. NN ) -> ( F ` n ) = ( F ` n ) ) |
|
| 151 | eqidd | |- ( ( ph /\ j e. NN ) -> ( F ` j ) = ( F ` j ) ) |
|
| 152 | 12 36 | fssd | |- ( ph -> F : NN --> X ) |
| 153 | 146 148 149 150 151 152 | iscauf | |- ( ph -> ( F e. ( Cau ` D ) <-> A. x e. RR+ E. j e. NN A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) ) |
| 154 | 145 153 | mpbird | |- ( ph -> F e. ( Cau ` D ) ) |