This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A separable metric space (a metric space with a countable dense subset) is second-countable. (Contributed by Mario Carneiro, 13-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | methaus.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | met2ndci | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝐽 ∈ 2ndω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | methaus.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | 1 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝐽 ∈ Top ) |
| 4 | simpll | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 5 | simplr1 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝐴 ⊆ 𝑋 ) | |
| 6 | simprr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ 𝐴 ) | |
| 7 | 5 6 | sseldd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ 𝑋 ) |
| 8 | simprl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ ℕ ) | |
| 9 | 8 | nnrpd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ ℝ+ ) |
| 10 | 9 | rpreccld | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( 1 / 𝑥 ) ∈ ℝ+ ) |
| 11 | 10 | rpxrd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( 1 / 𝑥 ) ∈ ℝ* ) |
| 12 | 1 | blopn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ ( 1 / 𝑥 ) ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ∈ 𝐽 ) |
| 13 | 4 7 11 12 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ∈ 𝐽 ) |
| 14 | 13 | ralrimivva | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ∈ 𝐽 ) |
| 15 | eqid | ⊢ ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) = ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) | |
| 16 | 15 | fmpo | ⊢ ( ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ∈ 𝐽 ↔ ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) : ( ℕ × 𝐴 ) ⟶ 𝐽 ) |
| 17 | 14 16 | sylib | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) : ( ℕ × 𝐴 ) ⟶ 𝐽 ) |
| 18 | 17 | frnd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ⊆ 𝐽 ) |
| 19 | simpll | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 20 | simprl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) → 𝑢 ∈ 𝐽 ) | |
| 21 | simprr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) → 𝑧 ∈ 𝑢 ) | |
| 22 | 1 | mopni2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) |
| 23 | 19 20 21 22 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) → ∃ 𝑟 ∈ ℝ+ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) |
| 24 | simprl | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ) → 𝑟 ∈ ℝ+ ) | |
| 25 | 24 | rphalfcld | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 26 | elrp | ⊢ ( ( 𝑟 / 2 ) ∈ ℝ+ ↔ ( ( 𝑟 / 2 ) ∈ ℝ ∧ 0 < ( 𝑟 / 2 ) ) ) | |
| 27 | nnrecl | ⊢ ( ( ( 𝑟 / 2 ) ∈ ℝ ∧ 0 < ( 𝑟 / 2 ) ) → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) | |
| 28 | 26 27 | sylbi | ⊢ ( ( 𝑟 / 2 ) ∈ ℝ+ → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) |
| 29 | 25 28 | syl | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ) → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) |
| 30 | 3 | ad2antrr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝐽 ∈ Top ) |
| 31 | simpr1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝐴 ⊆ 𝑋 ) | |
| 32 | 31 | ad2antrr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝐴 ⊆ 𝑋 ) |
| 33 | 1 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 34 | 33 | ad3antrrr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝑋 = ∪ 𝐽 ) |
| 35 | 32 34 | sseqtrd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝐴 ⊆ ∪ 𝐽 ) |
| 36 | simplrr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝑧 ∈ 𝑢 ) | |
| 37 | simplrl | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝑢 ∈ 𝐽 ) | |
| 38 | elunii | ⊢ ( ( 𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝐽 ) → 𝑧 ∈ ∪ 𝐽 ) | |
| 39 | 36 37 38 | syl2anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝑧 ∈ ∪ 𝐽 ) |
| 40 | 39 34 | eleqtrrd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝑧 ∈ 𝑋 ) |
| 41 | simpr3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) | |
| 42 | 41 | ad2antrr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) |
| 43 | 40 42 | eleqtrrd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝑧 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 44 | 19 | adantr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 45 | simprrl | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝑛 ∈ ℕ ) | |
| 46 | 45 | nnrpd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝑛 ∈ ℝ+ ) |
| 47 | 46 | rpreccld | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 48 | 47 | rpxrd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ( 1 / 𝑛 ) ∈ ℝ* ) |
| 49 | 1 | blopn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ ( 1 / 𝑛 ) ∈ ℝ* ) → ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∈ 𝐽 ) |
| 50 | 44 40 48 49 | syl3anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∈ 𝐽 ) |
| 51 | blcntr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ ( 1 / 𝑛 ) ∈ ℝ+ ) → 𝑧 ∈ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) | |
| 52 | 44 40 47 51 | syl3anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝑧 ∈ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) |
| 53 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 54 | 53 | clsndisj | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽 ∧ 𝑧 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ∧ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∈ 𝐽 ∧ 𝑧 ∈ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ) → ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ≠ ∅ ) |
| 55 | 30 35 43 50 52 54 | syl32anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ≠ ∅ ) |
| 56 | n0 | ⊢ ( ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ≠ ∅ ↔ ∃ 𝑡 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) | |
| 57 | 55 56 | sylib | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ∃ 𝑡 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) |
| 58 | 45 | adantr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝑛 ∈ ℕ ) |
| 59 | simpr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) | |
| 60 | 59 | elin2d | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝑡 ∈ 𝐴 ) |
| 61 | eqidd | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) | |
| 62 | oveq2 | ⊢ ( 𝑥 = 𝑛 → ( 1 / 𝑥 ) = ( 1 / 𝑛 ) ) | |
| 63 | 62 | oveq2d | ⊢ ( 𝑥 = 𝑛 → ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) |
| 64 | 63 | eqeq2d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ↔ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ) |
| 65 | oveq1 | ⊢ ( 𝑦 = 𝑡 → ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) | |
| 66 | 65 | eqeq2d | ⊢ ( 𝑦 = 𝑡 → ( ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ↔ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ) |
| 67 | 64 66 | rspc2ev | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ 𝐴 ∧ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ 𝐴 ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) |
| 68 | 58 60 61 67 | syl3anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ 𝐴 ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) |
| 69 | ovex | ⊢ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∈ V | |
| 70 | eqeq1 | ⊢ ( 𝑧 = ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) → ( 𝑧 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ↔ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ) | |
| 71 | 70 | 2rexbidv | ⊢ ( 𝑧 = ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) → ( ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ↔ ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ 𝐴 ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ) |
| 72 | 15 | rnmpo | ⊢ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) = { 𝑧 ∣ ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) } |
| 73 | 69 71 72 | elab2 | ⊢ ( ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∈ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ↔ ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ 𝐴 ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) |
| 74 | 68 73 | sylibr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∈ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ) |
| 75 | 59 | elin1d | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝑡 ∈ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) |
| 76 | 44 | adantr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 77 | 48 | adantr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 1 / 𝑛 ) ∈ ℝ* ) |
| 78 | 40 | adantr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝑧 ∈ 𝑋 ) |
| 79 | 32 | adantr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝐴 ⊆ 𝑋 ) |
| 80 | 79 60 | sseldd | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝑡 ∈ 𝑋 ) |
| 81 | blcom | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1 / 𝑛 ) ∈ ℝ* ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑡 ∈ 𝑋 ) ) → ( 𝑡 ∈ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ↔ 𝑧 ∈ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ) | |
| 82 | 76 77 78 80 81 | syl22anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 𝑡 ∈ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ↔ 𝑧 ∈ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ) |
| 83 | 75 82 | mpbid | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝑧 ∈ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) |
| 84 | simprll | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝑟 ∈ ℝ+ ) | |
| 85 | 84 | adantr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝑟 ∈ ℝ+ ) |
| 86 | 85 | rphalfcld | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 87 | 86 | rpxrd | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 𝑟 / 2 ) ∈ ℝ* ) |
| 88 | simprrr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) | |
| 89 | 84 | rphalfcld | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 90 | rpre | ⊢ ( ( 1 / 𝑛 ) ∈ ℝ+ → ( 1 / 𝑛 ) ∈ ℝ ) | |
| 91 | rpre | ⊢ ( ( 𝑟 / 2 ) ∈ ℝ+ → ( 𝑟 / 2 ) ∈ ℝ ) | |
| 92 | ltle | ⊢ ( ( ( 1 / 𝑛 ) ∈ ℝ ∧ ( 𝑟 / 2 ) ∈ ℝ ) → ( ( 1 / 𝑛 ) < ( 𝑟 / 2 ) → ( 1 / 𝑛 ) ≤ ( 𝑟 / 2 ) ) ) | |
| 93 | 90 91 92 | syl2an | ⊢ ( ( ( 1 / 𝑛 ) ∈ ℝ+ ∧ ( 𝑟 / 2 ) ∈ ℝ+ ) → ( ( 1 / 𝑛 ) < ( 𝑟 / 2 ) → ( 1 / 𝑛 ) ≤ ( 𝑟 / 2 ) ) ) |
| 94 | 47 89 93 | syl2anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ( ( 1 / 𝑛 ) < ( 𝑟 / 2 ) → ( 1 / 𝑛 ) ≤ ( 𝑟 / 2 ) ) ) |
| 95 | 88 94 | mpd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ( 1 / 𝑛 ) ≤ ( 𝑟 / 2 ) ) |
| 96 | 95 | adantr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 1 / 𝑛 ) ≤ ( 𝑟 / 2 ) ) |
| 97 | ssbl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑡 ∈ 𝑋 ) ∧ ( ( 1 / 𝑛 ) ∈ ℝ* ∧ ( 𝑟 / 2 ) ∈ ℝ* ) ∧ ( 1 / 𝑛 ) ≤ ( 𝑟 / 2 ) ) → ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ⊆ ( 𝑡 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) | |
| 98 | 76 80 77 87 96 97 | syl221anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ⊆ ( 𝑡 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
| 99 | 85 | rpred | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝑟 ∈ ℝ ) |
| 100 | 98 83 | sseldd | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝑧 ∈ ( 𝑡 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
| 101 | blhalf | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑡 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ ∧ 𝑧 ∈ ( 𝑡 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) → ( 𝑡 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ⊆ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) | |
| 102 | 76 80 99 100 101 | syl22anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 𝑡 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ⊆ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 103 | simprlr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) | |
| 104 | 103 | adantr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) |
| 105 | 102 104 | sstrd | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 𝑡 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ⊆ 𝑢 ) |
| 106 | 98 105 | sstrd | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ⊆ 𝑢 ) |
| 107 | eleq2 | ⊢ ( 𝑤 = ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ) | |
| 108 | sseq1 | ⊢ ( 𝑤 = ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) → ( 𝑤 ⊆ 𝑢 ↔ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ⊆ 𝑢 ) ) | |
| 109 | 107 108 | anbi12d | ⊢ ( 𝑤 = ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) → ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ↔ ( 𝑧 ∈ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∧ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ⊆ 𝑢 ) ) ) |
| 110 | 109 | rspcev | ⊢ ( ( ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∈ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ∧ ( 𝑧 ∈ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∧ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ⊆ 𝑢 ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) |
| 111 | 74 83 106 110 | syl12anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) |
| 112 | 57 111 | exlimddv | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) |
| 113 | 112 | anassrs | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) |
| 114 | 29 113 | rexlimddv | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) |
| 115 | 23 114 | rexlimddv | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝑢 ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) |
| 116 | 115 | ralrimivva | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ∀ 𝑢 ∈ 𝐽 ∀ 𝑧 ∈ 𝑢 ∃ 𝑤 ∈ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) |
| 117 | basgen2 | ⊢ ( ( 𝐽 ∈ Top ∧ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ⊆ 𝐽 ∧ ∀ 𝑢 ∈ 𝐽 ∀ 𝑧 ∈ 𝑢 ∃ 𝑤 ∈ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) → ( topGen ‘ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ) = 𝐽 ) | |
| 118 | 3 18 116 117 | syl3anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( topGen ‘ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ) = 𝐽 ) |
| 119 | 118 3 | eqeltrd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( topGen ‘ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ) ∈ Top ) |
| 120 | tgclb | ⊢ ( ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ∈ TopBases ↔ ( topGen ‘ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ) ∈ Top ) | |
| 121 | 119 120 | sylibr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ∈ TopBases ) |
| 122 | omelon | ⊢ ω ∈ On | |
| 123 | simpr2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝐴 ≼ ω ) | |
| 124 | nnex | ⊢ ℕ ∈ V | |
| 125 | 124 | xpdom2 | ⊢ ( 𝐴 ≼ ω → ( ℕ × 𝐴 ) ≼ ( ℕ × ω ) ) |
| 126 | 123 125 | syl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( ℕ × 𝐴 ) ≼ ( ℕ × ω ) ) |
| 127 | nnenom | ⊢ ℕ ≈ ω | |
| 128 | omex | ⊢ ω ∈ V | |
| 129 | 128 | enref | ⊢ ω ≈ ω |
| 130 | xpen | ⊢ ( ( ℕ ≈ ω ∧ ω ≈ ω ) → ( ℕ × ω ) ≈ ( ω × ω ) ) | |
| 131 | 127 129 130 | mp2an | ⊢ ( ℕ × ω ) ≈ ( ω × ω ) |
| 132 | xpomen | ⊢ ( ω × ω ) ≈ ω | |
| 133 | 131 132 | entri | ⊢ ( ℕ × ω ) ≈ ω |
| 134 | domentr | ⊢ ( ( ( ℕ × 𝐴 ) ≼ ( ℕ × ω ) ∧ ( ℕ × ω ) ≈ ω ) → ( ℕ × 𝐴 ) ≼ ω ) | |
| 135 | 126 133 134 | sylancl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( ℕ × 𝐴 ) ≼ ω ) |
| 136 | ondomen | ⊢ ( ( ω ∈ On ∧ ( ℕ × 𝐴 ) ≼ ω ) → ( ℕ × 𝐴 ) ∈ dom card ) | |
| 137 | 122 135 136 | sylancr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( ℕ × 𝐴 ) ∈ dom card ) |
| 138 | 17 | ffnd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) Fn ( ℕ × 𝐴 ) ) |
| 139 | dffn4 | ⊢ ( ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) Fn ( ℕ × 𝐴 ) ↔ ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) : ( ℕ × 𝐴 ) –onto→ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ) | |
| 140 | 138 139 | sylib | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) : ( ℕ × 𝐴 ) –onto→ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ) |
| 141 | fodomnum | ⊢ ( ( ℕ × 𝐴 ) ∈ dom card → ( ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) : ( ℕ × 𝐴 ) –onto→ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) → ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ≼ ( ℕ × 𝐴 ) ) ) | |
| 142 | 137 140 141 | sylc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ≼ ( ℕ × 𝐴 ) ) |
| 143 | domtr | ⊢ ( ( ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ≼ ( ℕ × 𝐴 ) ∧ ( ℕ × 𝐴 ) ≼ ω ) → ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ≼ ω ) | |
| 144 | 142 135 143 | syl2anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ≼ ω ) |
| 145 | 2ndci | ⊢ ( ( ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ∈ TopBases ∧ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ≼ ω ) → ( topGen ‘ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ) ∈ 2ndω ) | |
| 146 | 121 144 145 | syl2anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( topGen ‘ ran ( 𝑥 ∈ ℕ , 𝑦 ∈ 𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ) ∈ 2ndω ) |
| 147 | 118 146 | eqeltrrd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝐽 ∈ 2ndω ) |