This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A metric space is second-countable iff it is separable (has a countable dense subset). (Contributed by Mario Carneiro, 13-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | methaus.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | met2ndc | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐽 ∈ 2ndω ↔ ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | methaus.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | 2 | 2ndcsep | ⊢ ( 𝐽 ∈ 2ndω → ∃ 𝑥 ∈ 𝒫 ∪ 𝐽 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = ∪ 𝐽 ) ) |
| 4 | 1 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 5 | 4 | pweqd | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝒫 𝑋 = 𝒫 ∪ 𝐽 ) |
| 6 | 4 | eqeq2d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = ∪ 𝐽 ) ) |
| 7 | 6 | anbi2d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ↔ ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = ∪ 𝐽 ) ) ) |
| 8 | 5 7 | rexeqbidv | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ↔ ∃ 𝑥 ∈ 𝒫 ∪ 𝐽 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = ∪ 𝐽 ) ) ) |
| 9 | 3 8 | imbitrrid | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐽 ∈ 2ndω → ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) ) |
| 10 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) | |
| 11 | 1 | met2ndci | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) → 𝐽 ∈ 2ndω ) |
| 12 | 11 | 3exp2 | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ⊆ 𝑋 → ( 𝑥 ≼ ω → ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 → 𝐽 ∈ 2ndω ) ) ) ) |
| 13 | 12 | imp4a | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ⊆ 𝑋 → ( ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) → 𝐽 ∈ 2ndω ) ) ) |
| 14 | 10 13 | syl5 | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∈ 𝒫 𝑋 → ( ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) → 𝐽 ∈ 2ndω ) ) ) |
| 15 | 14 | rexlimdv | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) → 𝐽 ∈ 2ndω ) ) |
| 16 | 9 15 | impbid | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐽 ∈ 2ndω ↔ ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) ) |