This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A countable basis generates a second-countable topology. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2ndci | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝐵 ≼ ω ) → ( topGen ‘ 𝐵 ) ∈ 2ndω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝐵 ≼ ω ) → 𝐵 ∈ TopBases ) | |
| 2 | simpr | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝐵 ≼ ω ) → 𝐵 ≼ ω ) | |
| 3 | eqidd | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝐵 ≼ ω ) → ( topGen ‘ 𝐵 ) = ( topGen ‘ 𝐵 ) ) | |
| 4 | breq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ≼ ω ↔ 𝐵 ≼ ω ) ) | |
| 5 | fveqeq2 | ⊢ ( 𝑥 = 𝐵 → ( ( topGen ‘ 𝑥 ) = ( topGen ‘ 𝐵 ) ↔ ( topGen ‘ 𝐵 ) = ( topGen ‘ 𝐵 ) ) ) | |
| 6 | 4 5 | anbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = ( topGen ‘ 𝐵 ) ) ↔ ( 𝐵 ≼ ω ∧ ( topGen ‘ 𝐵 ) = ( topGen ‘ 𝐵 ) ) ) ) |
| 7 | 6 | rspcev | ⊢ ( ( 𝐵 ∈ TopBases ∧ ( 𝐵 ≼ ω ∧ ( topGen ‘ 𝐵 ) = ( topGen ‘ 𝐵 ) ) ) → ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = ( topGen ‘ 𝐵 ) ) ) |
| 8 | 1 2 3 7 | syl12anc | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝐵 ≼ ω ) → ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = ( topGen ‘ 𝐵 ) ) ) |
| 9 | is2ndc | ⊢ ( ( topGen ‘ 𝐵 ) ∈ 2ndω ↔ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = ( topGen ‘ 𝐵 ) ) ) | |
| 10 | 8 9 | sylibr | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝐵 ≼ ω ) → ( topGen ‘ 𝐵 ) ∈ 2ndω ) |