This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A separable metric space (a metric space with a countable dense subset) is second-countable. (Contributed by Mario Carneiro, 13-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | methaus.1 | |- J = ( MetOpen ` D ) |
|
| Assertion | met2ndci | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> J e. 2ndc ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | methaus.1 | |- J = ( MetOpen ` D ) |
|
| 2 | 1 | mopntop | |- ( D e. ( *Met ` X ) -> J e. Top ) |
| 3 | 2 | adantr | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> J e. Top ) |
| 4 | simpll | |- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( x e. NN /\ y e. A ) ) -> D e. ( *Met ` X ) ) |
|
| 5 | simplr1 | |- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( x e. NN /\ y e. A ) ) -> A C_ X ) |
|
| 6 | simprr | |- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( x e. NN /\ y e. A ) ) -> y e. A ) |
|
| 7 | 5 6 | sseldd | |- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( x e. NN /\ y e. A ) ) -> y e. X ) |
| 8 | simprl | |- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( x e. NN /\ y e. A ) ) -> x e. NN ) |
|
| 9 | 8 | nnrpd | |- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( x e. NN /\ y e. A ) ) -> x e. RR+ ) |
| 10 | 9 | rpreccld | |- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( x e. NN /\ y e. A ) ) -> ( 1 / x ) e. RR+ ) |
| 11 | 10 | rpxrd | |- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( x e. NN /\ y e. A ) ) -> ( 1 / x ) e. RR* ) |
| 12 | 1 | blopn | |- ( ( D e. ( *Met ` X ) /\ y e. X /\ ( 1 / x ) e. RR* ) -> ( y ( ball ` D ) ( 1 / x ) ) e. J ) |
| 13 | 4 7 11 12 | syl3anc | |- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( x e. NN /\ y e. A ) ) -> ( y ( ball ` D ) ( 1 / x ) ) e. J ) |
| 14 | 13 | ralrimivva | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> A. x e. NN A. y e. A ( y ( ball ` D ) ( 1 / x ) ) e. J ) |
| 15 | eqid | |- ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) = ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) |
|
| 16 | 15 | fmpo | |- ( A. x e. NN A. y e. A ( y ( ball ` D ) ( 1 / x ) ) e. J <-> ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) : ( NN X. A ) --> J ) |
| 17 | 14 16 | sylib | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) : ( NN X. A ) --> J ) |
| 18 | 17 | frnd | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) C_ J ) |
| 19 | simpll | |- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) -> D e. ( *Met ` X ) ) |
|
| 20 | simprl | |- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) -> u e. J ) |
|
| 21 | simprr | |- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) -> z e. u ) |
|
| 22 | 1 | mopni2 | |- ( ( D e. ( *Met ` X ) /\ u e. J /\ z e. u ) -> E. r e. RR+ ( z ( ball ` D ) r ) C_ u ) |
| 23 | 19 20 21 22 | syl3anc | |- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) -> E. r e. RR+ ( z ( ball ` D ) r ) C_ u ) |
| 24 | simprl | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) ) -> r e. RR+ ) |
|
| 25 | 24 | rphalfcld | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) ) -> ( r / 2 ) e. RR+ ) |
| 26 | elrp | |- ( ( r / 2 ) e. RR+ <-> ( ( r / 2 ) e. RR /\ 0 < ( r / 2 ) ) ) |
|
| 27 | nnrecl | |- ( ( ( r / 2 ) e. RR /\ 0 < ( r / 2 ) ) -> E. n e. NN ( 1 / n ) < ( r / 2 ) ) |
|
| 28 | 26 27 | sylbi | |- ( ( r / 2 ) e. RR+ -> E. n e. NN ( 1 / n ) < ( r / 2 ) ) |
| 29 | 25 28 | syl | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) ) -> E. n e. NN ( 1 / n ) < ( r / 2 ) ) |
| 30 | 3 | ad2antrr | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> J e. Top ) |
| 31 | simpr1 | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> A C_ X ) |
|
| 32 | 31 | ad2antrr | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> A C_ X ) |
| 33 | 1 | mopnuni | |- ( D e. ( *Met ` X ) -> X = U. J ) |
| 34 | 33 | ad3antrrr | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> X = U. J ) |
| 35 | 32 34 | sseqtrd | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> A C_ U. J ) |
| 36 | simplrr | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> z e. u ) |
|
| 37 | simplrl | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> u e. J ) |
|
| 38 | elunii | |- ( ( z e. u /\ u e. J ) -> z e. U. J ) |
|
| 39 | 36 37 38 | syl2anc | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> z e. U. J ) |
| 40 | 39 34 | eleqtrrd | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> z e. X ) |
| 41 | simpr3 | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ( ( cls ` J ) ` A ) = X ) |
|
| 42 | 41 | ad2antrr | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> ( ( cls ` J ) ` A ) = X ) |
| 43 | 40 42 | eleqtrrd | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> z e. ( ( cls ` J ) ` A ) ) |
| 44 | 19 | adantr | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> D e. ( *Met ` X ) ) |
| 45 | simprrl | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> n e. NN ) |
|
| 46 | 45 | nnrpd | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> n e. RR+ ) |
| 47 | 46 | rpreccld | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> ( 1 / n ) e. RR+ ) |
| 48 | 47 | rpxrd | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> ( 1 / n ) e. RR* ) |
| 49 | 1 | blopn | |- ( ( D e. ( *Met ` X ) /\ z e. X /\ ( 1 / n ) e. RR* ) -> ( z ( ball ` D ) ( 1 / n ) ) e. J ) |
| 50 | 44 40 48 49 | syl3anc | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> ( z ( ball ` D ) ( 1 / n ) ) e. J ) |
| 51 | blcntr | |- ( ( D e. ( *Met ` X ) /\ z e. X /\ ( 1 / n ) e. RR+ ) -> z e. ( z ( ball ` D ) ( 1 / n ) ) ) |
|
| 52 | 44 40 47 51 | syl3anc | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> z e. ( z ( ball ` D ) ( 1 / n ) ) ) |
| 53 | eqid | |- U. J = U. J |
|
| 54 | 53 | clsndisj | |- ( ( ( J e. Top /\ A C_ U. J /\ z e. ( ( cls ` J ) ` A ) ) /\ ( ( z ( ball ` D ) ( 1 / n ) ) e. J /\ z e. ( z ( ball ` D ) ( 1 / n ) ) ) ) -> ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) =/= (/) ) |
| 55 | 30 35 43 50 52 54 | syl32anc | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) =/= (/) ) |
| 56 | n0 | |- ( ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) =/= (/) <-> E. t t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) |
|
| 57 | 55 56 | sylib | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> E. t t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) |
| 58 | 45 | adantr | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> n e. NN ) |
| 59 | simpr | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) |
|
| 60 | 59 | elin2d | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> t e. A ) |
| 61 | eqidd | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( t ( ball ` D ) ( 1 / n ) ) = ( t ( ball ` D ) ( 1 / n ) ) ) |
|
| 62 | oveq2 | |- ( x = n -> ( 1 / x ) = ( 1 / n ) ) |
|
| 63 | 62 | oveq2d | |- ( x = n -> ( y ( ball ` D ) ( 1 / x ) ) = ( y ( ball ` D ) ( 1 / n ) ) ) |
| 64 | 63 | eqeq2d | |- ( x = n -> ( ( t ( ball ` D ) ( 1 / n ) ) = ( y ( ball ` D ) ( 1 / x ) ) <-> ( t ( ball ` D ) ( 1 / n ) ) = ( y ( ball ` D ) ( 1 / n ) ) ) ) |
| 65 | oveq1 | |- ( y = t -> ( y ( ball ` D ) ( 1 / n ) ) = ( t ( ball ` D ) ( 1 / n ) ) ) |
|
| 66 | 65 | eqeq2d | |- ( y = t -> ( ( t ( ball ` D ) ( 1 / n ) ) = ( y ( ball ` D ) ( 1 / n ) ) <-> ( t ( ball ` D ) ( 1 / n ) ) = ( t ( ball ` D ) ( 1 / n ) ) ) ) |
| 67 | 64 66 | rspc2ev | |- ( ( n e. NN /\ t e. A /\ ( t ( ball ` D ) ( 1 / n ) ) = ( t ( ball ` D ) ( 1 / n ) ) ) -> E. x e. NN E. y e. A ( t ( ball ` D ) ( 1 / n ) ) = ( y ( ball ` D ) ( 1 / x ) ) ) |
| 68 | 58 60 61 67 | syl3anc | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> E. x e. NN E. y e. A ( t ( ball ` D ) ( 1 / n ) ) = ( y ( ball ` D ) ( 1 / x ) ) ) |
| 69 | ovex | |- ( t ( ball ` D ) ( 1 / n ) ) e. _V |
|
| 70 | eqeq1 | |- ( z = ( t ( ball ` D ) ( 1 / n ) ) -> ( z = ( y ( ball ` D ) ( 1 / x ) ) <-> ( t ( ball ` D ) ( 1 / n ) ) = ( y ( ball ` D ) ( 1 / x ) ) ) ) |
|
| 71 | 70 | 2rexbidv | |- ( z = ( t ( ball ` D ) ( 1 / n ) ) -> ( E. x e. NN E. y e. A z = ( y ( ball ` D ) ( 1 / x ) ) <-> E. x e. NN E. y e. A ( t ( ball ` D ) ( 1 / n ) ) = ( y ( ball ` D ) ( 1 / x ) ) ) ) |
| 72 | 15 | rnmpo | |- ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) = { z | E. x e. NN E. y e. A z = ( y ( ball ` D ) ( 1 / x ) ) } |
| 73 | 69 71 72 | elab2 | |- ( ( t ( ball ` D ) ( 1 / n ) ) e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) <-> E. x e. NN E. y e. A ( t ( ball ` D ) ( 1 / n ) ) = ( y ( ball ` D ) ( 1 / x ) ) ) |
| 74 | 68 73 | sylibr | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( t ( ball ` D ) ( 1 / n ) ) e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ) |
| 75 | 59 | elin1d | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> t e. ( z ( ball ` D ) ( 1 / n ) ) ) |
| 76 | 44 | adantr | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> D e. ( *Met ` X ) ) |
| 77 | 48 | adantr | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( 1 / n ) e. RR* ) |
| 78 | 40 | adantr | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> z e. X ) |
| 79 | 32 | adantr | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> A C_ X ) |
| 80 | 79 60 | sseldd | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> t e. X ) |
| 81 | blcom | |- ( ( ( D e. ( *Met ` X ) /\ ( 1 / n ) e. RR* ) /\ ( z e. X /\ t e. X ) ) -> ( t e. ( z ( ball ` D ) ( 1 / n ) ) <-> z e. ( t ( ball ` D ) ( 1 / n ) ) ) ) |
|
| 82 | 76 77 78 80 81 | syl22anc | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( t e. ( z ( ball ` D ) ( 1 / n ) ) <-> z e. ( t ( ball ` D ) ( 1 / n ) ) ) ) |
| 83 | 75 82 | mpbid | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> z e. ( t ( ball ` D ) ( 1 / n ) ) ) |
| 84 | simprll | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> r e. RR+ ) |
|
| 85 | 84 | adantr | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> r e. RR+ ) |
| 86 | 85 | rphalfcld | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( r / 2 ) e. RR+ ) |
| 87 | 86 | rpxrd | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( r / 2 ) e. RR* ) |
| 88 | simprrr | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> ( 1 / n ) < ( r / 2 ) ) |
|
| 89 | 84 | rphalfcld | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> ( r / 2 ) e. RR+ ) |
| 90 | rpre | |- ( ( 1 / n ) e. RR+ -> ( 1 / n ) e. RR ) |
|
| 91 | rpre | |- ( ( r / 2 ) e. RR+ -> ( r / 2 ) e. RR ) |
|
| 92 | ltle | |- ( ( ( 1 / n ) e. RR /\ ( r / 2 ) e. RR ) -> ( ( 1 / n ) < ( r / 2 ) -> ( 1 / n ) <_ ( r / 2 ) ) ) |
|
| 93 | 90 91 92 | syl2an | |- ( ( ( 1 / n ) e. RR+ /\ ( r / 2 ) e. RR+ ) -> ( ( 1 / n ) < ( r / 2 ) -> ( 1 / n ) <_ ( r / 2 ) ) ) |
| 94 | 47 89 93 | syl2anc | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> ( ( 1 / n ) < ( r / 2 ) -> ( 1 / n ) <_ ( r / 2 ) ) ) |
| 95 | 88 94 | mpd | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> ( 1 / n ) <_ ( r / 2 ) ) |
| 96 | 95 | adantr | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( 1 / n ) <_ ( r / 2 ) ) |
| 97 | ssbl | |- ( ( ( D e. ( *Met ` X ) /\ t e. X ) /\ ( ( 1 / n ) e. RR* /\ ( r / 2 ) e. RR* ) /\ ( 1 / n ) <_ ( r / 2 ) ) -> ( t ( ball ` D ) ( 1 / n ) ) C_ ( t ( ball ` D ) ( r / 2 ) ) ) |
|
| 98 | 76 80 77 87 96 97 | syl221anc | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( t ( ball ` D ) ( 1 / n ) ) C_ ( t ( ball ` D ) ( r / 2 ) ) ) |
| 99 | 85 | rpred | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> r e. RR ) |
| 100 | 98 83 | sseldd | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> z e. ( t ( ball ` D ) ( r / 2 ) ) ) |
| 101 | blhalf | |- ( ( ( D e. ( *Met ` X ) /\ t e. X ) /\ ( r e. RR /\ z e. ( t ( ball ` D ) ( r / 2 ) ) ) ) -> ( t ( ball ` D ) ( r / 2 ) ) C_ ( z ( ball ` D ) r ) ) |
|
| 102 | 76 80 99 100 101 | syl22anc | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( t ( ball ` D ) ( r / 2 ) ) C_ ( z ( ball ` D ) r ) ) |
| 103 | simprlr | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> ( z ( ball ` D ) r ) C_ u ) |
|
| 104 | 103 | adantr | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( z ( ball ` D ) r ) C_ u ) |
| 105 | 102 104 | sstrd | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( t ( ball ` D ) ( r / 2 ) ) C_ u ) |
| 106 | 98 105 | sstrd | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( t ( ball ` D ) ( 1 / n ) ) C_ u ) |
| 107 | eleq2 | |- ( w = ( t ( ball ` D ) ( 1 / n ) ) -> ( z e. w <-> z e. ( t ( ball ` D ) ( 1 / n ) ) ) ) |
|
| 108 | sseq1 | |- ( w = ( t ( ball ` D ) ( 1 / n ) ) -> ( w C_ u <-> ( t ( ball ` D ) ( 1 / n ) ) C_ u ) ) |
|
| 109 | 107 108 | anbi12d | |- ( w = ( t ( ball ` D ) ( 1 / n ) ) -> ( ( z e. w /\ w C_ u ) <-> ( z e. ( t ( ball ` D ) ( 1 / n ) ) /\ ( t ( ball ` D ) ( 1 / n ) ) C_ u ) ) ) |
| 110 | 109 | rspcev | |- ( ( ( t ( ball ` D ) ( 1 / n ) ) e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) /\ ( z e. ( t ( ball ` D ) ( 1 / n ) ) /\ ( t ( ball ` D ) ( 1 / n ) ) C_ u ) ) -> E. w e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ( z e. w /\ w C_ u ) ) |
| 111 | 74 83 106 110 | syl12anc | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> E. w e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ( z e. w /\ w C_ u ) ) |
| 112 | 57 111 | exlimddv | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> E. w e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ( z e. w /\ w C_ u ) ) |
| 113 | 112 | anassrs | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) -> E. w e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ( z e. w /\ w C_ u ) ) |
| 114 | 29 113 | rexlimddv | |- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) ) -> E. w e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ( z e. w /\ w C_ u ) ) |
| 115 | 23 114 | rexlimddv | |- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) -> E. w e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ( z e. w /\ w C_ u ) ) |
| 116 | 115 | ralrimivva | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> A. u e. J A. z e. u E. w e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ( z e. w /\ w C_ u ) ) |
| 117 | basgen2 | |- ( ( J e. Top /\ ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) C_ J /\ A. u e. J A. z e. u E. w e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ( z e. w /\ w C_ u ) ) -> ( topGen ` ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ) = J ) |
|
| 118 | 3 18 116 117 | syl3anc | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ( topGen ` ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ) = J ) |
| 119 | 118 3 | eqeltrd | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ( topGen ` ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ) e. Top ) |
| 120 | tgclb | |- ( ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) e. TopBases <-> ( topGen ` ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ) e. Top ) |
|
| 121 | 119 120 | sylibr | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) e. TopBases ) |
| 122 | omelon | |- _om e. On |
|
| 123 | simpr2 | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> A ~<_ _om ) |
|
| 124 | nnex | |- NN e. _V |
|
| 125 | 124 | xpdom2 | |- ( A ~<_ _om -> ( NN X. A ) ~<_ ( NN X. _om ) ) |
| 126 | 123 125 | syl | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ( NN X. A ) ~<_ ( NN X. _om ) ) |
| 127 | nnenom | |- NN ~~ _om |
|
| 128 | omex | |- _om e. _V |
|
| 129 | 128 | enref | |- _om ~~ _om |
| 130 | xpen | |- ( ( NN ~~ _om /\ _om ~~ _om ) -> ( NN X. _om ) ~~ ( _om X. _om ) ) |
|
| 131 | 127 129 130 | mp2an | |- ( NN X. _om ) ~~ ( _om X. _om ) |
| 132 | xpomen | |- ( _om X. _om ) ~~ _om |
|
| 133 | 131 132 | entri | |- ( NN X. _om ) ~~ _om |
| 134 | domentr | |- ( ( ( NN X. A ) ~<_ ( NN X. _om ) /\ ( NN X. _om ) ~~ _om ) -> ( NN X. A ) ~<_ _om ) |
|
| 135 | 126 133 134 | sylancl | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ( NN X. A ) ~<_ _om ) |
| 136 | ondomen | |- ( ( _om e. On /\ ( NN X. A ) ~<_ _om ) -> ( NN X. A ) e. dom card ) |
|
| 137 | 122 135 136 | sylancr | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ( NN X. A ) e. dom card ) |
| 138 | 17 | ffnd | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) Fn ( NN X. A ) ) |
| 139 | dffn4 | |- ( ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) Fn ( NN X. A ) <-> ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) : ( NN X. A ) -onto-> ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ) |
|
| 140 | 138 139 | sylib | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) : ( NN X. A ) -onto-> ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ) |
| 141 | fodomnum | |- ( ( NN X. A ) e. dom card -> ( ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) : ( NN X. A ) -onto-> ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) -> ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ~<_ ( NN X. A ) ) ) |
|
| 142 | 137 140 141 | sylc | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ~<_ ( NN X. A ) ) |
| 143 | domtr | |- ( ( ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ~<_ ( NN X. A ) /\ ( NN X. A ) ~<_ _om ) -> ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ~<_ _om ) |
|
| 144 | 142 135 143 | syl2anc | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ~<_ _om ) |
| 145 | 2ndci | |- ( ( ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) e. TopBases /\ ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ~<_ _om ) -> ( topGen ` ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ) e. 2ndc ) |
|
| 146 | 121 144 145 | syl2anc | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ( topGen ` ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ) e. 2ndc ) |
| 147 | 118 146 | eqeltrrd | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> J e. 2ndc ) |