This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The maximum of two functions is measurable. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfmax.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | |
| mbfmax.2 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | ||
| mbfmax.3 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ ℝ ) | ||
| mbfmax.4 | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) | ||
| mbfmax.5 | ⊢ 𝐻 = ( 𝑥 ∈ 𝐴 ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) ) ) | ||
| Assertion | mbfmax | ⊢ ( 𝜑 → 𝐻 ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfmax.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | |
| 2 | mbfmax.2 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 3 | mbfmax.3 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ ℝ ) | |
| 4 | mbfmax.4 | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) | |
| 5 | mbfmax.5 | ⊢ 𝐻 = ( 𝑥 ∈ 𝐴 ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) ) ) | |
| 6 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 7 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 8 | 6 7 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 9 | 8 5 | fmptd | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ ℝ ) |
| 10 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → 𝐹 : 𝐴 ⟶ ℝ ) |
| 11 | 10 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 12 | 11 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ* ) |
| 13 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → 𝐺 : 𝐴 ⟶ ℝ ) |
| 14 | 13 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑧 ) ∈ ℝ ) |
| 15 | 14 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑧 ) ∈ ℝ* ) |
| 16 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) | |
| 17 | xrmaxle | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ* ∧ ( 𝐺 ‘ 𝑧 ) ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑦 ↔ ( ( 𝐹 ‘ 𝑧 ) ≤ 𝑦 ∧ ( 𝐺 ‘ 𝑧 ) ≤ 𝑦 ) ) ) | |
| 18 | 12 15 16 17 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑦 ↔ ( ( 𝐹 ‘ 𝑧 ) ≤ 𝑦 ∧ ( 𝐺 ‘ 𝑧 ) ≤ 𝑦 ) ) ) |
| 19 | 18 | notbid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ¬ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑦 ↔ ¬ ( ( 𝐹 ‘ 𝑧 ) ≤ 𝑦 ∧ ( 𝐺 ‘ 𝑧 ) ≤ 𝑦 ) ) ) |
| 20 | ianor | ⊢ ( ¬ ( ( 𝐹 ‘ 𝑧 ) ≤ 𝑦 ∧ ( 𝐺 ‘ 𝑧 ) ≤ 𝑦 ) ↔ ( ¬ ( 𝐹 ‘ 𝑧 ) ≤ 𝑦 ∨ ¬ ( 𝐺 ‘ 𝑧 ) ≤ 𝑦 ) ) | |
| 21 | 19 20 | bitrdi | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ¬ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑦 ↔ ( ¬ ( 𝐹 ‘ 𝑧 ) ≤ 𝑦 ∨ ¬ ( 𝐺 ‘ 𝑧 ) ≤ 𝑦 ) ) ) |
| 22 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 23 | elioo2 | ⊢ ( ( 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝑦 (,) +∞ ) ↔ ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ∧ 𝑦 < if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∧ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) < +∞ ) ) ) | |
| 24 | 16 22 23 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝑦 (,) +∞ ) ↔ ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ∧ 𝑦 < if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∧ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) < +∞ ) ) ) |
| 25 | 3anan12 | ⊢ ( ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ∧ 𝑦 < if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∧ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) < +∞ ) ↔ ( 𝑦 < if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∧ ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ∧ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) < +∞ ) ) ) | |
| 26 | 24 25 | bitrdi | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝑦 (,) +∞ ) ↔ ( 𝑦 < if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∧ ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ∧ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) < +∞ ) ) ) ) |
| 27 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 28 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 29 | 27 28 | breq12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) ) ) |
| 30 | 29 28 27 | ifbieq12d | ⊢ ( 𝑥 = 𝑧 → if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) ) = if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ) |
| 31 | fvex | ⊢ ( 𝐺 ‘ 𝑧 ) ∈ V | |
| 32 | fvex | ⊢ ( 𝐹 ‘ 𝑧 ) ∈ V | |
| 33 | 31 32 | ifex | ⊢ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ V |
| 34 | 30 5 33 | fvmpt | ⊢ ( 𝑧 ∈ 𝐴 → ( 𝐻 ‘ 𝑧 ) = if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ) |
| 35 | 34 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑧 ) = if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ) |
| 36 | 35 | eleq1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝑦 (,) +∞ ) ) ) |
| 37 | 14 11 | ifcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
| 38 | ltpnf | ⊢ ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ → if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) < +∞ ) | |
| 39 | 37 38 | jccir | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ∧ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) < +∞ ) ) |
| 40 | 39 | biantrud | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 < if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ↔ ( 𝑦 < if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∧ ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ∧ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) < +∞ ) ) ) ) |
| 41 | 26 36 40 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ 𝑦 < if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 42 | 37 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ) |
| 43 | xrltnle | ⊢ ( ( 𝑦 ∈ ℝ* ∧ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ* ) → ( 𝑦 < if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ↔ ¬ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑦 ) ) | |
| 44 | 16 42 43 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 < if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ↔ ¬ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑦 ) ) |
| 45 | 41 44 | bitrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ¬ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑦 ) ) |
| 46 | elioo2 | ⊢ ( ( 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 < ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) < +∞ ) ) ) | |
| 47 | 16 22 46 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 < ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) < +∞ ) ) ) |
| 48 | 3anan12 | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 < ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) < +∞ ) ↔ ( 𝑦 < ( 𝐹 ‘ 𝑧 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) < +∞ ) ) ) | |
| 49 | 47 48 | bitrdi | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( 𝑦 < ( 𝐹 ‘ 𝑧 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) < +∞ ) ) ) ) |
| 50 | ltpnf | ⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ → ( 𝐹 ‘ 𝑧 ) < +∞ ) | |
| 51 | 11 50 | jccir | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) < +∞ ) ) |
| 52 | 51 | biantrud | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 < ( 𝐹 ‘ 𝑧 ) ↔ ( 𝑦 < ( 𝐹 ‘ 𝑧 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) < +∞ ) ) ) ) |
| 53 | xrltnle | ⊢ ( ( 𝑦 ∈ ℝ* ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ* ) → ( 𝑦 < ( 𝐹 ‘ 𝑧 ) ↔ ¬ ( 𝐹 ‘ 𝑧 ) ≤ 𝑦 ) ) | |
| 54 | 16 12 53 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 < ( 𝐹 ‘ 𝑧 ) ↔ ¬ ( 𝐹 ‘ 𝑧 ) ≤ 𝑦 ) ) |
| 55 | 49 52 54 | 3bitr2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ¬ ( 𝐹 ‘ 𝑧 ) ≤ 𝑦 ) ) |
| 56 | elioo2 | ⊢ ( ( 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( 𝐺 ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 < ( 𝐺 ‘ 𝑧 ) ∧ ( 𝐺 ‘ 𝑧 ) < +∞ ) ) ) | |
| 57 | 16 22 56 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( 𝐺 ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 < ( 𝐺 ‘ 𝑧 ) ∧ ( 𝐺 ‘ 𝑧 ) < +∞ ) ) ) |
| 58 | 3anan12 | ⊢ ( ( ( 𝐺 ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 < ( 𝐺 ‘ 𝑧 ) ∧ ( 𝐺 ‘ 𝑧 ) < +∞ ) ↔ ( 𝑦 < ( 𝐺 ‘ 𝑧 ) ∧ ( ( 𝐺 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) < +∞ ) ) ) | |
| 59 | 57 58 | bitrdi | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( 𝑦 < ( 𝐺 ‘ 𝑧 ) ∧ ( ( 𝐺 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) < +∞ ) ) ) ) |
| 60 | ltpnf | ⊢ ( ( 𝐺 ‘ 𝑧 ) ∈ ℝ → ( 𝐺 ‘ 𝑧 ) < +∞ ) | |
| 61 | 14 60 | jccir | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) < +∞ ) ) |
| 62 | 61 | biantrud | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 < ( 𝐺 ‘ 𝑧 ) ↔ ( 𝑦 < ( 𝐺 ‘ 𝑧 ) ∧ ( ( 𝐺 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) < +∞ ) ) ) ) |
| 63 | xrltnle | ⊢ ( ( 𝑦 ∈ ℝ* ∧ ( 𝐺 ‘ 𝑧 ) ∈ ℝ* ) → ( 𝑦 < ( 𝐺 ‘ 𝑧 ) ↔ ¬ ( 𝐺 ‘ 𝑧 ) ≤ 𝑦 ) ) | |
| 64 | 16 15 63 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 < ( 𝐺 ‘ 𝑧 ) ↔ ¬ ( 𝐺 ‘ 𝑧 ) ≤ 𝑦 ) ) |
| 65 | 59 62 64 | 3bitr2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ¬ ( 𝐺 ‘ 𝑧 ) ≤ 𝑦 ) ) |
| 66 | 55 65 | orbi12d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ∨ ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ↔ ( ¬ ( 𝐹 ‘ 𝑧 ) ≤ 𝑦 ∨ ¬ ( 𝐺 ‘ 𝑧 ) ≤ 𝑦 ) ) ) |
| 67 | 21 45 66 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ∨ ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) |
| 68 | 67 | pm5.32da | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑧 ∈ 𝐴 ∧ ( 𝐻 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ∨ ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) ) |
| 69 | andi | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ∨ ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ) ↔ ( ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ∨ ( 𝑧 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) | |
| 70 | 68 69 | bitrdi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑧 ∈ 𝐴 ∧ ( 𝐻 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ↔ ( ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ∨ ( 𝑧 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) ) |
| 71 | 9 | ffnd | ⊢ ( 𝜑 → 𝐻 Fn 𝐴 ) |
| 72 | 71 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → 𝐻 Fn 𝐴 ) |
| 73 | elpreima | ⊢ ( 𝐻 Fn 𝐴 → ( 𝑧 ∈ ( ◡ 𝐻 “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐻 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) | |
| 74 | 72 73 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( 𝑧 ∈ ( ◡ 𝐻 “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐻 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) |
| 75 | 10 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → 𝐹 Fn 𝐴 ) |
| 76 | elpreima | ⊢ ( 𝐹 Fn 𝐴 → ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) | |
| 77 | 75 76 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) |
| 78 | 13 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → 𝐺 Fn 𝐴 ) |
| 79 | elpreima | ⊢ ( 𝐺 Fn 𝐴 → ( 𝑧 ∈ ( ◡ 𝐺 “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) | |
| 80 | 78 79 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( 𝑧 ∈ ( ◡ 𝐺 “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) |
| 81 | 77 80 | orbi12d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝑦 (,) +∞ ) ) ∨ 𝑧 ∈ ( ◡ 𝐺 “ ( 𝑦 (,) +∞ ) ) ) ↔ ( ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ∨ ( 𝑧 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) ) |
| 82 | 70 74 81 | 3bitr4d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( 𝑧 ∈ ( ◡ 𝐻 “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝑦 (,) +∞ ) ) ∨ 𝑧 ∈ ( ◡ 𝐺 “ ( 𝑦 (,) +∞ ) ) ) ) ) |
| 83 | elun | ⊢ ( 𝑧 ∈ ( ( ◡ 𝐹 “ ( 𝑦 (,) +∞ ) ) ∪ ( ◡ 𝐺 “ ( 𝑦 (,) +∞ ) ) ) ↔ ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝑦 (,) +∞ ) ) ∨ 𝑧 ∈ ( ◡ 𝐺 “ ( 𝑦 (,) +∞ ) ) ) ) | |
| 84 | 82 83 | bitr4di | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( 𝑧 ∈ ( ◡ 𝐻 “ ( 𝑦 (,) +∞ ) ) ↔ 𝑧 ∈ ( ( ◡ 𝐹 “ ( 𝑦 (,) +∞ ) ) ∪ ( ◡ 𝐺 “ ( 𝑦 (,) +∞ ) ) ) ) ) |
| 85 | 84 | eqrdv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( ◡ 𝐻 “ ( 𝑦 (,) +∞ ) ) = ( ( ◡ 𝐹 “ ( 𝑦 (,) +∞ ) ) ∪ ( ◡ 𝐺 “ ( 𝑦 (,) +∞ ) ) ) ) |
| 86 | mbfima | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) | |
| 87 | 2 1 86 | syl2anc | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) |
| 88 | mbfima | ⊢ ( ( 𝐺 ∈ MblFn ∧ 𝐺 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐺 “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) | |
| 89 | 4 3 88 | syl2anc | ⊢ ( 𝜑 → ( ◡ 𝐺 “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) |
| 90 | unmbl | ⊢ ( ( ( ◡ 𝐹 “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ∧ ( ◡ 𝐺 “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) → ( ( ◡ 𝐹 “ ( 𝑦 (,) +∞ ) ) ∪ ( ◡ 𝐺 “ ( 𝑦 (,) +∞ ) ) ) ∈ dom vol ) | |
| 91 | 87 89 90 | syl2anc | ⊢ ( 𝜑 → ( ( ◡ 𝐹 “ ( 𝑦 (,) +∞ ) ) ∪ ( ◡ 𝐺 “ ( 𝑦 (,) +∞ ) ) ) ∈ dom vol ) |
| 92 | 91 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( ( ◡ 𝐹 “ ( 𝑦 (,) +∞ ) ) ∪ ( ◡ 𝐺 “ ( 𝑦 (,) +∞ ) ) ) ∈ dom vol ) |
| 93 | 85 92 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( ◡ 𝐻 “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) |
| 94 | xrmaxlt | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ* ∧ ( 𝐺 ‘ 𝑧 ) ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ↔ ( ( 𝐹 ‘ 𝑧 ) < 𝑦 ∧ ( 𝐺 ‘ 𝑧 ) < 𝑦 ) ) ) | |
| 95 | 12 15 16 94 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ↔ ( ( 𝐹 ‘ 𝑧 ) < 𝑦 ∧ ( 𝐺 ‘ 𝑧 ) < 𝑦 ) ) ) |
| 96 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 97 | elioo2 | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ( -∞ (,) 𝑦 ) ↔ ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ∧ -∞ < if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∧ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ) ) ) | |
| 98 | 96 16 97 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ( -∞ (,) 𝑦 ) ↔ ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ∧ -∞ < if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∧ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ) ) ) |
| 99 | df-3an | ⊢ ( ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ∧ -∞ < if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∧ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ) ↔ ( ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ∧ -∞ < if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ) ∧ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ) ) | |
| 100 | 98 99 | bitrdi | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ∧ -∞ < if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ) ∧ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ) ) ) |
| 101 | 35 | eleq1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ( -∞ (,) 𝑦 ) ) ) |
| 102 | mnflt | ⊢ ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ → -∞ < if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ) | |
| 103 | 37 102 | jccir | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ∧ -∞ < if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 104 | 103 | biantrurd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ↔ ( ( if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ∧ -∞ < if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) ) ∧ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ) ) ) |
| 105 | 100 101 104 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ) ) |
| 106 | mnflt | ⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ → -∞ < ( 𝐹 ‘ 𝑧 ) ) | |
| 107 | 11 106 | jccir | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ -∞ < ( 𝐹 ‘ 𝑧 ) ) ) |
| 108 | elioo2 | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ -∞ < ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) < 𝑦 ) ) ) | |
| 109 | 96 16 108 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ -∞ < ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) < 𝑦 ) ) ) |
| 110 | df-3an | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ -∞ < ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) < 𝑦 ) ↔ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ -∞ < ( 𝐹 ‘ 𝑧 ) ) ∧ ( 𝐹 ‘ 𝑧 ) < 𝑦 ) ) | |
| 111 | 109 110 | bitrdi | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ -∞ < ( 𝐹 ‘ 𝑧 ) ) ∧ ( 𝐹 ‘ 𝑧 ) < 𝑦 ) ) ) |
| 112 | 107 111 | mpbirand | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) < 𝑦 ) ) |
| 113 | mnflt | ⊢ ( ( 𝐺 ‘ 𝑧 ) ∈ ℝ → -∞ < ( 𝐺 ‘ 𝑧 ) ) | |
| 114 | 14 113 | jccir | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑧 ) ∈ ℝ ∧ -∞ < ( 𝐺 ‘ 𝑧 ) ) ) |
| 115 | elioo2 | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( ( 𝐺 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( 𝐺 ‘ 𝑧 ) ∈ ℝ ∧ -∞ < ( 𝐺 ‘ 𝑧 ) ∧ ( 𝐺 ‘ 𝑧 ) < 𝑦 ) ) ) | |
| 116 | 96 16 115 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( 𝐺 ‘ 𝑧 ) ∈ ℝ ∧ -∞ < ( 𝐺 ‘ 𝑧 ) ∧ ( 𝐺 ‘ 𝑧 ) < 𝑦 ) ) ) |
| 117 | df-3an | ⊢ ( ( ( 𝐺 ‘ 𝑧 ) ∈ ℝ ∧ -∞ < ( 𝐺 ‘ 𝑧 ) ∧ ( 𝐺 ‘ 𝑧 ) < 𝑦 ) ↔ ( ( ( 𝐺 ‘ 𝑧 ) ∈ ℝ ∧ -∞ < ( 𝐺 ‘ 𝑧 ) ) ∧ ( 𝐺 ‘ 𝑧 ) < 𝑦 ) ) | |
| 118 | 116 117 | bitrdi | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( ( 𝐺 ‘ 𝑧 ) ∈ ℝ ∧ -∞ < ( 𝐺 ‘ 𝑧 ) ) ∧ ( 𝐺 ‘ 𝑧 ) < 𝑦 ) ) ) |
| 119 | 114 118 | mpbirand | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( 𝐺 ‘ 𝑧 ) < 𝑦 ) ) |
| 120 | 112 119 | anbi12d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) < 𝑦 ∧ ( 𝐺 ‘ 𝑧 ) < 𝑦 ) ) ) |
| 121 | 95 105 120 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) |
| 122 | 121 | pm5.32da | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑧 ∈ 𝐴 ∧ ( 𝐻 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) ) |
| 123 | anandi | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ) ↔ ( ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) | |
| 124 | 122 123 | bitrdi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑧 ∈ 𝐴 ∧ ( 𝐻 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ↔ ( ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) ) |
| 125 | elpreima | ⊢ ( 𝐻 Fn 𝐴 → ( 𝑧 ∈ ( ◡ 𝐻 “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐻 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) | |
| 126 | 72 125 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( 𝑧 ∈ ( ◡ 𝐻 “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐻 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) |
| 127 | elpreima | ⊢ ( 𝐹 Fn 𝐴 → ( 𝑧 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) | |
| 128 | 75 127 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) |
| 129 | elpreima | ⊢ ( 𝐺 Fn 𝐴 → ( 𝑧 ∈ ( ◡ 𝐺 “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) | |
| 130 | 78 129 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( 𝑧 ∈ ( ◡ 𝐺 “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) |
| 131 | 128 130 | anbi12d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑧 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∧ 𝑧 ∈ ( ◡ 𝐺 “ ( -∞ (,) 𝑦 ) ) ) ↔ ( ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) ) |
| 132 | 124 126 131 | 3bitr4d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( 𝑧 ∈ ( ◡ 𝐻 “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∧ 𝑧 ∈ ( ◡ 𝐺 “ ( -∞ (,) 𝑦 ) ) ) ) ) |
| 133 | elin | ⊢ ( 𝑧 ∈ ( ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∩ ( ◡ 𝐺 “ ( -∞ (,) 𝑦 ) ) ) ↔ ( 𝑧 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∧ 𝑧 ∈ ( ◡ 𝐺 “ ( -∞ (,) 𝑦 ) ) ) ) | |
| 134 | 132 133 | bitr4di | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( 𝑧 ∈ ( ◡ 𝐻 “ ( -∞ (,) 𝑦 ) ) ↔ 𝑧 ∈ ( ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∩ ( ◡ 𝐺 “ ( -∞ (,) 𝑦 ) ) ) ) ) |
| 135 | 134 | eqrdv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( ◡ 𝐻 “ ( -∞ (,) 𝑦 ) ) = ( ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∩ ( ◡ 𝐺 “ ( -∞ (,) 𝑦 ) ) ) ) |
| 136 | mbfima | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) | |
| 137 | 2 1 136 | syl2anc | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
| 138 | mbfima | ⊢ ( ( 𝐺 ∈ MblFn ∧ 𝐺 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐺 “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) | |
| 139 | 4 3 138 | syl2anc | ⊢ ( 𝜑 → ( ◡ 𝐺 “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
| 140 | inmbl | ⊢ ( ( ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ∧ ( ◡ 𝐺 “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) → ( ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∩ ( ◡ 𝐺 “ ( -∞ (,) 𝑦 ) ) ) ∈ dom vol ) | |
| 141 | 137 139 140 | syl2anc | ⊢ ( 𝜑 → ( ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∩ ( ◡ 𝐺 “ ( -∞ (,) 𝑦 ) ) ) ∈ dom vol ) |
| 142 | 141 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∩ ( ◡ 𝐺 “ ( -∞ (,) 𝑦 ) ) ) ∈ dom vol ) |
| 143 | 135 142 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( ◡ 𝐻 “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
| 144 | 9 93 143 | ismbfd | ⊢ ( 𝜑 → 𝐻 ∈ MblFn ) |