This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrmaxle | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ≤ 𝐶 ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrmax1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → 𝐴 ≤ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → 𝐴 ≤ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ) |
| 3 | ifcl | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ∈ ℝ* ) | |
| 4 | 3 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ∈ ℝ* ) |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ∈ ℝ* ) |
| 6 | xrletr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ≤ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ∧ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ≤ 𝐶 ) → 𝐴 ≤ 𝐶 ) ) | |
| 7 | 5 6 | syld3an2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ≤ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ∧ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ≤ 𝐶 ) → 𝐴 ≤ 𝐶 ) ) |
| 8 | 2 7 | mpand | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ≤ 𝐶 → 𝐴 ≤ 𝐶 ) ) |
| 9 | xrmax2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → 𝐵 ≤ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ) | |
| 10 | 9 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → 𝐵 ≤ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ) |
| 11 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → 𝐵 ∈ ℝ* ) | |
| 12 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → 𝐶 ∈ ℝ* ) | |
| 13 | xrletr | ⊢ ( ( 𝐵 ∈ ℝ* ∧ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐵 ≤ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ∧ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ≤ 𝐶 ) → 𝐵 ≤ 𝐶 ) ) | |
| 14 | 11 5 12 13 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐵 ≤ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ∧ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ≤ 𝐶 ) → 𝐵 ≤ 𝐶 ) ) |
| 15 | 10 14 | mpand | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ≤ 𝐶 → 𝐵 ≤ 𝐶 ) ) |
| 16 | 8 15 | jcad | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ≤ 𝐶 → ( 𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶 ) ) ) |
| 17 | breq1 | ⊢ ( 𝐵 = if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) → ( 𝐵 ≤ 𝐶 ↔ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ≤ 𝐶 ) ) | |
| 18 | breq1 | ⊢ ( 𝐴 = if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) → ( 𝐴 ≤ 𝐶 ↔ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ≤ 𝐶 ) ) | |
| 19 | 17 18 | ifboth | ⊢ ( ( 𝐵 ≤ 𝐶 ∧ 𝐴 ≤ 𝐶 ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ≤ 𝐶 ) |
| 20 | 19 | ancoms | ⊢ ( ( 𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶 ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ≤ 𝐶 ) |
| 21 | 16 20 | impbid1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ≤ 𝐶 ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶 ) ) ) |