This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfneg.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| mbfneg.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | ||
| Assertion | mbfneg | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfneg.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 2 | mbfneg.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 3 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 4 | 3 1 | dmmptd | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 5 | 2 | dmexd | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
| 6 | 4 5 | eqeltrrd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 7 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 8 | 7 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 1 ∈ ℝ ) |
| 9 | fconstmpt | ⊢ ( 𝐴 × { - 1 } ) = ( 𝑥 ∈ 𝐴 ↦ - 1 ) | |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ( 𝐴 × { - 1 } ) = ( 𝑥 ∈ 𝐴 ↦ - 1 ) ) |
| 11 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) | |
| 12 | 6 8 1 10 11 | offval2 | ⊢ ( 𝜑 → ( ( 𝐴 × { - 1 } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( - 1 · 𝐵 ) ) ) |
| 13 | 2 1 | mbfmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 14 | 13 | mulm1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - 1 · 𝐵 ) = - 𝐵 ) |
| 15 | 14 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( - 1 · 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ) |
| 16 | 12 15 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 × { - 1 } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ) |
| 17 | 7 | a1i | ⊢ ( 𝜑 → - 1 ∈ ℝ ) |
| 18 | 13 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 19 | 2 17 18 | mbfmulc2re | ⊢ ( 𝜑 → ( ( 𝐴 × { - 1 } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ) |
| 20 | 16 19 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ MblFn ) |