This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 8-Apr-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ltexprlem.1 | ⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) } | |
| Assertion | ltexprlem7 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝐴 ⊊ 𝐵 ) → 𝐵 ⊆ ( 𝐴 +P 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltexprlem.1 | ⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) } | |
| 2 | 1 | ltexprlem5 | ⊢ ( ( 𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵 ) → 𝐶 ∈ P ) |
| 3 | ltaddpr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → 𝐴 <P ( 𝐴 +P 𝐶 ) ) | |
| 4 | addclpr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐴 +P 𝐶 ) ∈ P ) | |
| 5 | ltprord | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝐴 +P 𝐶 ) ∈ P ) → ( 𝐴 <P ( 𝐴 +P 𝐶 ) ↔ 𝐴 ⊊ ( 𝐴 +P 𝐶 ) ) ) | |
| 6 | 4 5 | syldan | ⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐴 <P ( 𝐴 +P 𝐶 ) ↔ 𝐴 ⊊ ( 𝐴 +P 𝐶 ) ) ) |
| 7 | 3 6 | mpbid | ⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → 𝐴 ⊊ ( 𝐴 +P 𝐶 ) ) |
| 8 | 7 | pssssd | ⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → 𝐴 ⊆ ( 𝐴 +P 𝐶 ) ) |
| 9 | 8 | sseld | ⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑤 ∈ 𝐴 → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) |
| 10 | 9 | 2a1d | ⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐵 ∈ P → ( 𝑤 ∈ 𝐵 → ( 𝑤 ∈ 𝐴 → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) ) ) |
| 11 | 10 | com4r | ⊢ ( 𝑤 ∈ 𝐴 → ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐵 ∈ P → ( 𝑤 ∈ 𝐵 → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) ) ) |
| 12 | 11 | expd | ⊢ ( 𝑤 ∈ 𝐴 → ( 𝐴 ∈ P → ( 𝐶 ∈ P → ( 𝐵 ∈ P → ( 𝑤 ∈ 𝐵 → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) ) ) ) |
| 13 | prnmadd | ⊢ ( ( 𝐵 ∈ P ∧ 𝑤 ∈ 𝐵 ) → ∃ 𝑣 ( 𝑤 +Q 𝑣 ) ∈ 𝐵 ) | |
| 14 | 13 | ex | ⊢ ( 𝐵 ∈ P → ( 𝑤 ∈ 𝐵 → ∃ 𝑣 ( 𝑤 +Q 𝑣 ) ∈ 𝐵 ) ) |
| 15 | elprnq | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑤 +Q 𝑣 ) ∈ 𝐵 ) → ( 𝑤 +Q 𝑣 ) ∈ Q ) | |
| 16 | addnqf | ⊢ +Q : ( Q × Q ) ⟶ Q | |
| 17 | 16 | fdmi | ⊢ dom +Q = ( Q × Q ) |
| 18 | 0nnq | ⊢ ¬ ∅ ∈ Q | |
| 19 | 17 18 | ndmovrcl | ⊢ ( ( 𝑤 +Q 𝑣 ) ∈ Q → ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) ) |
| 20 | 15 19 | syl | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑤 +Q 𝑣 ) ∈ 𝐵 ) → ( 𝑤 ∈ Q ∧ 𝑣 ∈ Q ) ) |
| 21 | 20 | simpld | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑤 +Q 𝑣 ) ∈ 𝐵 ) → 𝑤 ∈ Q ) |
| 22 | vex | ⊢ 𝑣 ∈ V | |
| 23 | 22 | prlem934 | ⊢ ( 𝐴 ∈ P → ∃ 𝑧 ∈ 𝐴 ¬ ( 𝑧 +Q 𝑣 ) ∈ 𝐴 ) |
| 24 | 23 | adantr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ∃ 𝑧 ∈ 𝐴 ¬ ( 𝑧 +Q 𝑣 ) ∈ 𝐴 ) |
| 25 | prub | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → ( ¬ 𝑤 ∈ 𝐴 → 𝑧 <Q 𝑤 ) ) | |
| 26 | ltexnq | ⊢ ( 𝑤 ∈ Q → ( 𝑧 <Q 𝑤 ↔ ∃ 𝑥 ( 𝑧 +Q 𝑥 ) = 𝑤 ) ) | |
| 27 | 26 | adantl | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → ( 𝑧 <Q 𝑤 ↔ ∃ 𝑥 ( 𝑧 +Q 𝑥 ) = 𝑤 ) ) |
| 28 | 25 27 | sylibd | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ Q ) → ( ¬ 𝑤 ∈ 𝐴 → ∃ 𝑥 ( 𝑧 +Q 𝑥 ) = 𝑤 ) ) |
| 29 | 28 | ex | ⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( 𝑤 ∈ Q → ( ¬ 𝑤 ∈ 𝐴 → ∃ 𝑥 ( 𝑧 +Q 𝑥 ) = 𝑤 ) ) ) |
| 30 | 29 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ ( 𝑧 +Q 𝑣 ) ∈ 𝐴 ) ) → ( 𝑤 ∈ Q → ( ¬ 𝑤 ∈ 𝐴 → ∃ 𝑥 ( 𝑧 +Q 𝑥 ) = 𝑤 ) ) ) |
| 31 | vex | ⊢ 𝑧 ∈ V | |
| 32 | vex | ⊢ 𝑥 ∈ V | |
| 33 | addcomnq | ⊢ ( 𝑓 +Q 𝑔 ) = ( 𝑔 +Q 𝑓 ) | |
| 34 | addassnq | ⊢ ( ( 𝑓 +Q 𝑔 ) +Q ℎ ) = ( 𝑓 +Q ( 𝑔 +Q ℎ ) ) | |
| 35 | 31 22 32 33 34 | caov32 | ⊢ ( ( 𝑧 +Q 𝑣 ) +Q 𝑥 ) = ( ( 𝑧 +Q 𝑥 ) +Q 𝑣 ) |
| 36 | oveq1 | ⊢ ( ( 𝑧 +Q 𝑥 ) = 𝑤 → ( ( 𝑧 +Q 𝑥 ) +Q 𝑣 ) = ( 𝑤 +Q 𝑣 ) ) | |
| 37 | 35 36 | eqtrid | ⊢ ( ( 𝑧 +Q 𝑥 ) = 𝑤 → ( ( 𝑧 +Q 𝑣 ) +Q 𝑥 ) = ( 𝑤 +Q 𝑣 ) ) |
| 38 | 37 | eleq1d | ⊢ ( ( 𝑧 +Q 𝑥 ) = 𝑤 → ( ( ( 𝑧 +Q 𝑣 ) +Q 𝑥 ) ∈ 𝐵 ↔ ( 𝑤 +Q 𝑣 ) ∈ 𝐵 ) ) |
| 39 | 38 | biimpar | ⊢ ( ( ( 𝑧 +Q 𝑥 ) = 𝑤 ∧ ( 𝑤 +Q 𝑣 ) ∈ 𝐵 ) → ( ( 𝑧 +Q 𝑣 ) +Q 𝑥 ) ∈ 𝐵 ) |
| 40 | ovex | ⊢ ( 𝑧 +Q 𝑣 ) ∈ V | |
| 41 | eleq1 | ⊢ ( 𝑦 = ( 𝑧 +Q 𝑣 ) → ( 𝑦 ∈ 𝐴 ↔ ( 𝑧 +Q 𝑣 ) ∈ 𝐴 ) ) | |
| 42 | 41 | notbid | ⊢ ( 𝑦 = ( 𝑧 +Q 𝑣 ) → ( ¬ 𝑦 ∈ 𝐴 ↔ ¬ ( 𝑧 +Q 𝑣 ) ∈ 𝐴 ) ) |
| 43 | oveq1 | ⊢ ( 𝑦 = ( 𝑧 +Q 𝑣 ) → ( 𝑦 +Q 𝑥 ) = ( ( 𝑧 +Q 𝑣 ) +Q 𝑥 ) ) | |
| 44 | 43 | eleq1d | ⊢ ( 𝑦 = ( 𝑧 +Q 𝑣 ) → ( ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ↔ ( ( 𝑧 +Q 𝑣 ) +Q 𝑥 ) ∈ 𝐵 ) ) |
| 45 | 42 44 | anbi12d | ⊢ ( 𝑦 = ( 𝑧 +Q 𝑣 ) → ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ↔ ( ¬ ( 𝑧 +Q 𝑣 ) ∈ 𝐴 ∧ ( ( 𝑧 +Q 𝑣 ) +Q 𝑥 ) ∈ 𝐵 ) ) ) |
| 46 | 40 45 | spcev | ⊢ ( ( ¬ ( 𝑧 +Q 𝑣 ) ∈ 𝐴 ∧ ( ( 𝑧 +Q 𝑣 ) +Q 𝑥 ) ∈ 𝐵 ) → ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
| 47 | 1 | eqabri | ⊢ ( 𝑥 ∈ 𝐶 ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
| 48 | 46 47 | sylibr | ⊢ ( ( ¬ ( 𝑧 +Q 𝑣 ) ∈ 𝐴 ∧ ( ( 𝑧 +Q 𝑣 ) +Q 𝑥 ) ∈ 𝐵 ) → 𝑥 ∈ 𝐶 ) |
| 49 | 39 48 | sylan2 | ⊢ ( ( ¬ ( 𝑧 +Q 𝑣 ) ∈ 𝐴 ∧ ( ( 𝑧 +Q 𝑥 ) = 𝑤 ∧ ( 𝑤 +Q 𝑣 ) ∈ 𝐵 ) ) → 𝑥 ∈ 𝐶 ) |
| 50 | df-plp | ⊢ +P = ( 𝑥 ∈ P , 𝑤 ∈ P ↦ { 𝑧 ∣ ∃ 𝑓 ∈ 𝑥 ∃ 𝑣 ∈ 𝑤 𝑧 = ( 𝑓 +Q 𝑣 ) } ) | |
| 51 | addclnq | ⊢ ( ( 𝑓 ∈ Q ∧ 𝑣 ∈ Q ) → ( 𝑓 +Q 𝑣 ) ∈ Q ) | |
| 52 | 50 51 | genpprecl | ⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑧 +Q 𝑥 ) ∈ ( 𝐴 +P 𝐶 ) ) ) |
| 53 | 49 52 | sylan2i | ⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑧 ∈ 𝐴 ∧ ( ¬ ( 𝑧 +Q 𝑣 ) ∈ 𝐴 ∧ ( ( 𝑧 +Q 𝑥 ) = 𝑤 ∧ ( 𝑤 +Q 𝑣 ) ∈ 𝐵 ) ) ) → ( 𝑧 +Q 𝑥 ) ∈ ( 𝐴 +P 𝐶 ) ) ) |
| 54 | 53 | exp4d | ⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑧 ∈ 𝐴 → ( ¬ ( 𝑧 +Q 𝑣 ) ∈ 𝐴 → ( ( ( 𝑧 +Q 𝑥 ) = 𝑤 ∧ ( 𝑤 +Q 𝑣 ) ∈ 𝐵 ) → ( 𝑧 +Q 𝑥 ) ∈ ( 𝐴 +P 𝐶 ) ) ) ) ) |
| 55 | 54 | imp42 | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ ( 𝑧 +Q 𝑣 ) ∈ 𝐴 ) ) ∧ ( ( 𝑧 +Q 𝑥 ) = 𝑤 ∧ ( 𝑤 +Q 𝑣 ) ∈ 𝐵 ) ) → ( 𝑧 +Q 𝑥 ) ∈ ( 𝐴 +P 𝐶 ) ) |
| 56 | eleq1 | ⊢ ( ( 𝑧 +Q 𝑥 ) = 𝑤 → ( ( 𝑧 +Q 𝑥 ) ∈ ( 𝐴 +P 𝐶 ) ↔ 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) | |
| 57 | 56 | ad2antrl | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ ( 𝑧 +Q 𝑣 ) ∈ 𝐴 ) ) ∧ ( ( 𝑧 +Q 𝑥 ) = 𝑤 ∧ ( 𝑤 +Q 𝑣 ) ∈ 𝐵 ) ) → ( ( 𝑧 +Q 𝑥 ) ∈ ( 𝐴 +P 𝐶 ) ↔ 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) |
| 58 | 55 57 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ ( 𝑧 +Q 𝑣 ) ∈ 𝐴 ) ) ∧ ( ( 𝑧 +Q 𝑥 ) = 𝑤 ∧ ( 𝑤 +Q 𝑣 ) ∈ 𝐵 ) ) → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) |
| 59 | 58 | exp32 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ ( 𝑧 +Q 𝑣 ) ∈ 𝐴 ) ) → ( ( 𝑧 +Q 𝑥 ) = 𝑤 → ( ( 𝑤 +Q 𝑣 ) ∈ 𝐵 → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) ) |
| 60 | 59 | exlimdv | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ ( 𝑧 +Q 𝑣 ) ∈ 𝐴 ) ) → ( ∃ 𝑥 ( 𝑧 +Q 𝑥 ) = 𝑤 → ( ( 𝑤 +Q 𝑣 ) ∈ 𝐵 → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) ) |
| 61 | 30 60 | syl6d | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ ( 𝑧 +Q 𝑣 ) ∈ 𝐴 ) ) → ( 𝑤 ∈ Q → ( ¬ 𝑤 ∈ 𝐴 → ( ( 𝑤 +Q 𝑣 ) ∈ 𝐵 → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) ) ) |
| 62 | 24 61 | rexlimddv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑤 ∈ Q → ( ¬ 𝑤 ∈ 𝐴 → ( ( 𝑤 +Q 𝑣 ) ∈ 𝐵 → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) ) ) |
| 63 | 62 | com14 | ⊢ ( ( 𝑤 +Q 𝑣 ) ∈ 𝐵 → ( 𝑤 ∈ Q → ( ¬ 𝑤 ∈ 𝐴 → ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) ) ) |
| 64 | 63 | adantl | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑤 +Q 𝑣 ) ∈ 𝐵 ) → ( 𝑤 ∈ Q → ( ¬ 𝑤 ∈ 𝐴 → ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) ) ) |
| 65 | 21 64 | mpd | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑤 +Q 𝑣 ) ∈ 𝐵 ) → ( ¬ 𝑤 ∈ 𝐴 → ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) ) |
| 66 | 65 | ex | ⊢ ( 𝐵 ∈ P → ( ( 𝑤 +Q 𝑣 ) ∈ 𝐵 → ( ¬ 𝑤 ∈ 𝐴 → ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) ) ) |
| 67 | 66 | exlimdv | ⊢ ( 𝐵 ∈ P → ( ∃ 𝑣 ( 𝑤 +Q 𝑣 ) ∈ 𝐵 → ( ¬ 𝑤 ∈ 𝐴 → ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) ) ) |
| 68 | 14 67 | syld | ⊢ ( 𝐵 ∈ P → ( 𝑤 ∈ 𝐵 → ( ¬ 𝑤 ∈ 𝐴 → ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) ) ) |
| 69 | 68 | com4t | ⊢ ( ¬ 𝑤 ∈ 𝐴 → ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐵 ∈ P → ( 𝑤 ∈ 𝐵 → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) ) ) |
| 70 | 69 | expd | ⊢ ( ¬ 𝑤 ∈ 𝐴 → ( 𝐴 ∈ P → ( 𝐶 ∈ P → ( 𝐵 ∈ P → ( 𝑤 ∈ 𝐵 → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) ) ) ) |
| 71 | 12 70 | pm2.61i | ⊢ ( 𝐴 ∈ P → ( 𝐶 ∈ P → ( 𝐵 ∈ P → ( 𝑤 ∈ 𝐵 → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) ) ) |
| 72 | 2 71 | syl5 | ⊢ ( 𝐴 ∈ P → ( ( 𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵 ) → ( 𝐵 ∈ P → ( 𝑤 ∈ 𝐵 → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) ) ) |
| 73 | 72 | expd | ⊢ ( 𝐴 ∈ P → ( 𝐵 ∈ P → ( 𝐴 ⊊ 𝐵 → ( 𝐵 ∈ P → ( 𝑤 ∈ 𝐵 → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) ) ) ) |
| 74 | 73 | com34 | ⊢ ( 𝐴 ∈ P → ( 𝐵 ∈ P → ( 𝐵 ∈ P → ( 𝐴 ⊊ 𝐵 → ( 𝑤 ∈ 𝐵 → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) ) ) ) |
| 75 | 74 | pm2.43d | ⊢ ( 𝐴 ∈ P → ( 𝐵 ∈ P → ( 𝐴 ⊊ 𝐵 → ( 𝑤 ∈ 𝐵 → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) ) ) |
| 76 | 75 | imp31 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝐴 ⊊ 𝐵 ) → ( 𝑤 ∈ 𝐵 → 𝑤 ∈ ( 𝐴 +P 𝐶 ) ) ) |
| 77 | 76 | ssrdv | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝐴 ⊊ 𝐵 ) → 𝐵 ⊆ ( 𝐴 +P 𝐶 ) ) |