This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995) (Revised by Mario Carneiro, 8-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addclnq | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( 𝐴 +Q 𝐵 ) ∈ Q ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addpqnq | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( 𝐴 +Q 𝐵 ) = ( [Q] ‘ ( 𝐴 +pQ 𝐵 ) ) ) | |
| 2 | elpqn | ⊢ ( 𝐴 ∈ Q → 𝐴 ∈ ( N × N ) ) | |
| 3 | elpqn | ⊢ ( 𝐵 ∈ Q → 𝐵 ∈ ( N × N ) ) | |
| 4 | addpqf | ⊢ +pQ : ( ( N × N ) × ( N × N ) ) ⟶ ( N × N ) | |
| 5 | 4 | fovcl | ⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐴 +pQ 𝐵 ) ∈ ( N × N ) ) |
| 6 | 2 3 5 | syl2an | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( 𝐴 +pQ 𝐵 ) ∈ ( N × N ) ) |
| 7 | nqercl | ⊢ ( ( 𝐴 +pQ 𝐵 ) ∈ ( N × N ) → ( [Q] ‘ ( 𝐴 +pQ 𝐵 ) ) ∈ Q ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( [Q] ‘ ( 𝐴 +pQ 𝐵 ) ) ∈ Q ) |
| 9 | 1 8 | eqeltrd | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( 𝐴 +Q 𝐵 ) ∈ Q ) |