This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Positive real 'less than' in terms of proper subset. (Contributed by NM, 20-Feb-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltprord | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 <P 𝐵 ↔ 𝐴 ⊊ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ P ↔ 𝐴 ∈ P ) ) | |
| 2 | 1 | anbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ↔ ( 𝐴 ∈ P ∧ 𝑦 ∈ P ) ) ) |
| 3 | psseq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝑦 ) ) | |
| 4 | 2 3 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ 𝑥 ⊊ 𝑦 ) ↔ ( ( 𝐴 ∈ P ∧ 𝑦 ∈ P ) ∧ 𝐴 ⊊ 𝑦 ) ) ) |
| 5 | eleq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ P ↔ 𝐵 ∈ P ) ) | |
| 6 | 5 | anbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ P ∧ 𝑦 ∈ P ) ↔ ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ) ) |
| 7 | psseq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝐵 ) ) | |
| 8 | 6 7 | anbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 ∈ P ∧ 𝑦 ∈ P ) ∧ 𝐴 ⊊ 𝑦 ) ↔ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝐴 ⊊ 𝐵 ) ) ) |
| 9 | df-ltp | ⊢ <P = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ 𝑥 ⊊ 𝑦 ) } | |
| 10 | 4 8 9 | brabg | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 <P 𝐵 ↔ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝐴 ⊊ 𝐵 ) ) ) |
| 11 | 10 | bianabs | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 <P 𝐵 ↔ 𝐴 ⊊ 𝐵 ) ) |