This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 8-Apr-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ltexprlem.1 | |- C = { x | E. y ( -. y e. A /\ ( y +Q x ) e. B ) } |
|
| Assertion | ltexprlem7 | |- ( ( ( A e. P. /\ B e. P. ) /\ A C. B ) -> B C_ ( A +P. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltexprlem.1 | |- C = { x | E. y ( -. y e. A /\ ( y +Q x ) e. B ) } |
|
| 2 | 1 | ltexprlem5 | |- ( ( B e. P. /\ A C. B ) -> C e. P. ) |
| 3 | ltaddpr | |- ( ( A e. P. /\ C e. P. ) -> A |
|
| 4 | addclpr | |- ( ( A e. P. /\ C e. P. ) -> ( A +P. C ) e. P. ) |
|
| 5 | ltprord | |- ( ( A e. P. /\ ( A +P. C ) e. P. ) -> ( A |
|
| 6 | 4 5 | syldan | |- ( ( A e. P. /\ C e. P. ) -> ( A |
| 7 | 3 6 | mpbid | |- ( ( A e. P. /\ C e. P. ) -> A C. ( A +P. C ) ) |
| 8 | 7 | pssssd | |- ( ( A e. P. /\ C e. P. ) -> A C_ ( A +P. C ) ) |
| 9 | 8 | sseld | |- ( ( A e. P. /\ C e. P. ) -> ( w e. A -> w e. ( A +P. C ) ) ) |
| 10 | 9 | 2a1d | |- ( ( A e. P. /\ C e. P. ) -> ( B e. P. -> ( w e. B -> ( w e. A -> w e. ( A +P. C ) ) ) ) ) |
| 11 | 10 | com4r | |- ( w e. A -> ( ( A e. P. /\ C e. P. ) -> ( B e. P. -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) |
| 12 | 11 | expd | |- ( w e. A -> ( A e. P. -> ( C e. P. -> ( B e. P. -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) ) |
| 13 | prnmadd | |- ( ( B e. P. /\ w e. B ) -> E. v ( w +Q v ) e. B ) |
|
| 14 | 13 | ex | |- ( B e. P. -> ( w e. B -> E. v ( w +Q v ) e. B ) ) |
| 15 | elprnq | |- ( ( B e. P. /\ ( w +Q v ) e. B ) -> ( w +Q v ) e. Q. ) |
|
| 16 | addnqf | |- +Q : ( Q. X. Q. ) --> Q. |
|
| 17 | 16 | fdmi | |- dom +Q = ( Q. X. Q. ) |
| 18 | 0nnq | |- -. (/) e. Q. |
|
| 19 | 17 18 | ndmovrcl | |- ( ( w +Q v ) e. Q. -> ( w e. Q. /\ v e. Q. ) ) |
| 20 | 15 19 | syl | |- ( ( B e. P. /\ ( w +Q v ) e. B ) -> ( w e. Q. /\ v e. Q. ) ) |
| 21 | 20 | simpld | |- ( ( B e. P. /\ ( w +Q v ) e. B ) -> w e. Q. ) |
| 22 | vex | |- v e. _V |
|
| 23 | 22 | prlem934 | |- ( A e. P. -> E. z e. A -. ( z +Q v ) e. A ) |
| 24 | 23 | adantr | |- ( ( A e. P. /\ C e. P. ) -> E. z e. A -. ( z +Q v ) e. A ) |
| 25 | prub | |- ( ( ( A e. P. /\ z e. A ) /\ w e. Q. ) -> ( -. w e. A -> z |
|
| 26 | ltexnq | |- ( w e. Q. -> ( zE. x ( z +Q x ) = w ) ) |
|
| 27 | 26 | adantl | |- ( ( ( A e. P. /\ z e. A ) /\ w e. Q. ) -> ( zE. x ( z +Q x ) = w ) ) |
| 28 | 25 27 | sylibd | |- ( ( ( A e. P. /\ z e. A ) /\ w e. Q. ) -> ( -. w e. A -> E. x ( z +Q x ) = w ) ) |
| 29 | 28 | ex | |- ( ( A e. P. /\ z e. A ) -> ( w e. Q. -> ( -. w e. A -> E. x ( z +Q x ) = w ) ) ) |
| 30 | 29 | ad2ant2r | |- ( ( ( A e. P. /\ C e. P. ) /\ ( z e. A /\ -. ( z +Q v ) e. A ) ) -> ( w e. Q. -> ( -. w e. A -> E. x ( z +Q x ) = w ) ) ) |
| 31 | vex | |- z e. _V |
|
| 32 | vex | |- x e. _V |
|
| 33 | addcomnq | |- ( f +Q g ) = ( g +Q f ) |
|
| 34 | addassnq | |- ( ( f +Q g ) +Q h ) = ( f +Q ( g +Q h ) ) |
|
| 35 | 31 22 32 33 34 | caov32 | |- ( ( z +Q v ) +Q x ) = ( ( z +Q x ) +Q v ) |
| 36 | oveq1 | |- ( ( z +Q x ) = w -> ( ( z +Q x ) +Q v ) = ( w +Q v ) ) |
|
| 37 | 35 36 | eqtrid | |- ( ( z +Q x ) = w -> ( ( z +Q v ) +Q x ) = ( w +Q v ) ) |
| 38 | 37 | eleq1d | |- ( ( z +Q x ) = w -> ( ( ( z +Q v ) +Q x ) e. B <-> ( w +Q v ) e. B ) ) |
| 39 | 38 | biimpar | |- ( ( ( z +Q x ) = w /\ ( w +Q v ) e. B ) -> ( ( z +Q v ) +Q x ) e. B ) |
| 40 | ovex | |- ( z +Q v ) e. _V |
|
| 41 | eleq1 | |- ( y = ( z +Q v ) -> ( y e. A <-> ( z +Q v ) e. A ) ) |
|
| 42 | 41 | notbid | |- ( y = ( z +Q v ) -> ( -. y e. A <-> -. ( z +Q v ) e. A ) ) |
| 43 | oveq1 | |- ( y = ( z +Q v ) -> ( y +Q x ) = ( ( z +Q v ) +Q x ) ) |
|
| 44 | 43 | eleq1d | |- ( y = ( z +Q v ) -> ( ( y +Q x ) e. B <-> ( ( z +Q v ) +Q x ) e. B ) ) |
| 45 | 42 44 | anbi12d | |- ( y = ( z +Q v ) -> ( ( -. y e. A /\ ( y +Q x ) e. B ) <-> ( -. ( z +Q v ) e. A /\ ( ( z +Q v ) +Q x ) e. B ) ) ) |
| 46 | 40 45 | spcev | |- ( ( -. ( z +Q v ) e. A /\ ( ( z +Q v ) +Q x ) e. B ) -> E. y ( -. y e. A /\ ( y +Q x ) e. B ) ) |
| 47 | 1 | eqabri | |- ( x e. C <-> E. y ( -. y e. A /\ ( y +Q x ) e. B ) ) |
| 48 | 46 47 | sylibr | |- ( ( -. ( z +Q v ) e. A /\ ( ( z +Q v ) +Q x ) e. B ) -> x e. C ) |
| 49 | 39 48 | sylan2 | |- ( ( -. ( z +Q v ) e. A /\ ( ( z +Q x ) = w /\ ( w +Q v ) e. B ) ) -> x e. C ) |
| 50 | df-plp | |- +P. = ( x e. P. , w e. P. |-> { z | E. f e. x E. v e. w z = ( f +Q v ) } ) |
|
| 51 | addclnq | |- ( ( f e. Q. /\ v e. Q. ) -> ( f +Q v ) e. Q. ) |
|
| 52 | 50 51 | genpprecl | |- ( ( A e. P. /\ C e. P. ) -> ( ( z e. A /\ x e. C ) -> ( z +Q x ) e. ( A +P. C ) ) ) |
| 53 | 49 52 | sylan2i | |- ( ( A e. P. /\ C e. P. ) -> ( ( z e. A /\ ( -. ( z +Q v ) e. A /\ ( ( z +Q x ) = w /\ ( w +Q v ) e. B ) ) ) -> ( z +Q x ) e. ( A +P. C ) ) ) |
| 54 | 53 | exp4d | |- ( ( A e. P. /\ C e. P. ) -> ( z e. A -> ( -. ( z +Q v ) e. A -> ( ( ( z +Q x ) = w /\ ( w +Q v ) e. B ) -> ( z +Q x ) e. ( A +P. C ) ) ) ) ) |
| 55 | 54 | imp42 | |- ( ( ( ( A e. P. /\ C e. P. ) /\ ( z e. A /\ -. ( z +Q v ) e. A ) ) /\ ( ( z +Q x ) = w /\ ( w +Q v ) e. B ) ) -> ( z +Q x ) e. ( A +P. C ) ) |
| 56 | eleq1 | |- ( ( z +Q x ) = w -> ( ( z +Q x ) e. ( A +P. C ) <-> w e. ( A +P. C ) ) ) |
|
| 57 | 56 | ad2antrl | |- ( ( ( ( A e. P. /\ C e. P. ) /\ ( z e. A /\ -. ( z +Q v ) e. A ) ) /\ ( ( z +Q x ) = w /\ ( w +Q v ) e. B ) ) -> ( ( z +Q x ) e. ( A +P. C ) <-> w e. ( A +P. C ) ) ) |
| 58 | 55 57 | mpbid | |- ( ( ( ( A e. P. /\ C e. P. ) /\ ( z e. A /\ -. ( z +Q v ) e. A ) ) /\ ( ( z +Q x ) = w /\ ( w +Q v ) e. B ) ) -> w e. ( A +P. C ) ) |
| 59 | 58 | exp32 | |- ( ( ( A e. P. /\ C e. P. ) /\ ( z e. A /\ -. ( z +Q v ) e. A ) ) -> ( ( z +Q x ) = w -> ( ( w +Q v ) e. B -> w e. ( A +P. C ) ) ) ) |
| 60 | 59 | exlimdv | |- ( ( ( A e. P. /\ C e. P. ) /\ ( z e. A /\ -. ( z +Q v ) e. A ) ) -> ( E. x ( z +Q x ) = w -> ( ( w +Q v ) e. B -> w e. ( A +P. C ) ) ) ) |
| 61 | 30 60 | syl6d | |- ( ( ( A e. P. /\ C e. P. ) /\ ( z e. A /\ -. ( z +Q v ) e. A ) ) -> ( w e. Q. -> ( -. w e. A -> ( ( w +Q v ) e. B -> w e. ( A +P. C ) ) ) ) ) |
| 62 | 24 61 | rexlimddv | |- ( ( A e. P. /\ C e. P. ) -> ( w e. Q. -> ( -. w e. A -> ( ( w +Q v ) e. B -> w e. ( A +P. C ) ) ) ) ) |
| 63 | 62 | com14 | |- ( ( w +Q v ) e. B -> ( w e. Q. -> ( -. w e. A -> ( ( A e. P. /\ C e. P. ) -> w e. ( A +P. C ) ) ) ) ) |
| 64 | 63 | adantl | |- ( ( B e. P. /\ ( w +Q v ) e. B ) -> ( w e. Q. -> ( -. w e. A -> ( ( A e. P. /\ C e. P. ) -> w e. ( A +P. C ) ) ) ) ) |
| 65 | 21 64 | mpd | |- ( ( B e. P. /\ ( w +Q v ) e. B ) -> ( -. w e. A -> ( ( A e. P. /\ C e. P. ) -> w e. ( A +P. C ) ) ) ) |
| 66 | 65 | ex | |- ( B e. P. -> ( ( w +Q v ) e. B -> ( -. w e. A -> ( ( A e. P. /\ C e. P. ) -> w e. ( A +P. C ) ) ) ) ) |
| 67 | 66 | exlimdv | |- ( B e. P. -> ( E. v ( w +Q v ) e. B -> ( -. w e. A -> ( ( A e. P. /\ C e. P. ) -> w e. ( A +P. C ) ) ) ) ) |
| 68 | 14 67 | syld | |- ( B e. P. -> ( w e. B -> ( -. w e. A -> ( ( A e. P. /\ C e. P. ) -> w e. ( A +P. C ) ) ) ) ) |
| 69 | 68 | com4t | |- ( -. w e. A -> ( ( A e. P. /\ C e. P. ) -> ( B e. P. -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) |
| 70 | 69 | expd | |- ( -. w e. A -> ( A e. P. -> ( C e. P. -> ( B e. P. -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) ) |
| 71 | 12 70 | pm2.61i | |- ( A e. P. -> ( C e. P. -> ( B e. P. -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) |
| 72 | 2 71 | syl5 | |- ( A e. P. -> ( ( B e. P. /\ A C. B ) -> ( B e. P. -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) |
| 73 | 72 | expd | |- ( A e. P. -> ( B e. P. -> ( A C. B -> ( B e. P. -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) ) |
| 74 | 73 | com34 | |- ( A e. P. -> ( B e. P. -> ( B e. P. -> ( A C. B -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) ) |
| 75 | 74 | pm2.43d | |- ( A e. P. -> ( B e. P. -> ( A C. B -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) |
| 76 | 75 | imp31 | |- ( ( ( A e. P. /\ B e. P. ) /\ A C. B ) -> ( w e. B -> w e. ( A +P. C ) ) ) |
| 77 | 76 | ssrdv | |- ( ( ( A e. P. /\ B e. P. ) /\ A C. B ) -> B C_ ( A +P. C ) ) |